
mod_cluster Documentation
2025-06-10

mod_cluster
1. Overview . 3

1.1. Support Matrix . 3

1.2. Platforms. 4

1.3. Advantages . 4

1.4. Requirements. 4

1.5. Limitations . 5

1.6. Downloads . 5

1.7. Configuration. 6

1.8. Migration from mod_jk or mod_proxy . 6

1.9. SSL support. 6

2. Quick Start Guide . 7

2.1. Download mod_cluster components . 7

2.2. Install the httpd binary . 7

2.3. Configure httpd . 8

2.4. Install the worker-side binaries . 9

2.5. Configuring the server-side . 10

2.6. Experiment with the Load Balancing Demo Application . 10

3. Container Integration Configuration. 11

3.1. JBoss AS. 11

3.2. JBoss Web & Tomcat. 13

3.3. AS7 modcluster subsystem Configuration . 13

3.4. ModCluster Subsystem configuration . 14

3.5. Building worker-side Components . 17

3.6. Worker-side Load Metrics . 28

3.7. Installing Worker-side Components. 34

4. httpd configuration . 35

4.1. Apache httpd configuration . 35

4.2. mod_proxy configuration. 35

4.3. mod_slotmem/mod_cluster_slotmem configuration . 36

4.4. mod_proxy_cluster. 36

4.5. mod_manager . 39

4.6. Minimal Example . 43

4.7. Building httpd modules. 44

5. Security configuration . 49

5.1. Using SSL in mod_cluster . 49

6. Load Balancing Demo Application. 55

6.1. Overview . 55

6.2. Basic Usage. 55

6.3. Client Driver Configuration Options . 57

6.4. Load Generation Scenarios . 58

7. FAQ. 62

7.1. What is Advertise? . 62

7.2. What to do if I don’t want to use Advertise (UDP multicast) . 62

7.3. It is not working, what should I do?. 63

7.4. I started mod_cluster and it looks like it’s using only one of the workers? 65

7.5. Keep seeing "HTTP/1.1 501 Method Not Implemented". 65

7.6. Redirect is not working (Tomcat, JBossWeb): . 66

7.7. I have more than one Tomcat/JBossWeb Connector . 66

7.8. Chrome does not display /mod_cluster-manager page . 66

7.9. How do I use mod_cluster with SELinux? . 67

7.10. How do I change STATUS message frequency? . 68

7.11. How can I debug requests in Undertow? . 68

8. Migration . 69

8.1. Migration from mod_jk . 69

8.2. Migration from mod_proxy . 70

9. Developer Resources . 73

Chapter 1. Overview

 Improve this page – edit on GitHub.

Project mod_cluster is an intelligent load balancer. Like mod_jk and mod_proxy, mod_cluster uses a
communication channel to forward requests from httpd to one of a set of application server nodes.
Unlike mod_jk and mod_proxy, mod_proxy_cluster leverages an additional connection between the
application server nodes and httpd. The application server nodes use this connection to transmit
server-side load balance factors and lifecycle events back to httpd via a custom set of HTTP
methods, affectionately called the Mod-Cluster Management Protocol (MCMP). This additional
feedback channel allows mod_proxy_cluster to offer a level of intelligence and granularity not
found in other load balancing solutions.

Within httpd, mod_proxy_cluster is implemented as a set of modules for httpd with mod_proxy
enabled. Much of the logic comes from mod_proxy, e.g. mod_proxy_ajp provides all the AJP logic
needed by mod_proxy_cluster.



In the past, mod_proxy_cluster was named mod_cluster (version 1.3.x and older),
consisting of native and container implementations. The repositories of the two
implementations were separated, and the native part got the name
mod_proxy_cluster, while the former name mod_cluster is currently used for
container implementation.

1.1. Support Matrix

1.1.1. Container Integration Modules

Release Tomcat versions Java SE Code Documentation

2.1 11.0, 10.1, 9.0 17 SCM Branch Javadoc

2.0 10.1, 9.0, 8.5 (EOL) 11 SCM Branch Javadoc

1.4 9.0, 8.5 (EOL), 8.0
(EOL), 7.0 (EOL)

8 SCM Branch Javadoc

1.1.2. Apache HTTP modules

Release httpd versions Code Documentation

2.0 (in development) 2.4.53 and newer SCM Branch Doxygen

1.3 2.4.49 and newer SCM Branch

Complete documentation for legacy versions is archived at https://docs.modcluster.io/legacy/.

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/introduction.adoc
https://github.com/modcluster/mod_cluster/tree/main
https://docs.modcluster.io/apidocs/2.1/
https://github.com/modcluster/mod_cluster/tree/2.0.x
https://docs.modcluster.io/apidocs/2.0/
https://github.com/modcluster/mod_cluster/tree/1.4.x
https://docs.modcluster.io/apidocs/1.4/
https://github.com/modcluster/mod_proxy_cluster/tree/main
https://docs.modcluster.io/apidocs/mpc-2.0/
https://github.com/modcluster/mod_cluster/tree/1.3.x
https://docs.modcluster.io/legacy/

1.2. Platforms
The binary packages of the modules needed to use with Apache httpd server are present in most
distributions.

If your distribution doesn’t provide mod_proxy_cluster, pick the latest version from the source and
follow the building instructions.

1.3. Advantages
mod_proxy_cluster boasts the following advantages over other httpd-based load balancers:

• Dynamic configuration of httpd workers

Traditional httpd-based load balancers require explicit configuration of the workers available to a
proxy. In mod_proxy_cluster, the bulk of the proxy’s configuration resides on the application
servers. The set of proxies to which an application server will communicate is determined either by
a static list or using dynamic discovery via the advertising mechanism. The application server
relays lifecycle events (e.g. server startup/shutdown) to the proxies allowing them to effectively
autoconfigure themselves. Notably, the graceful shutdown of a server will not result in a failover
response by a proxy, as is the case with traditional httpd-based load balancers.

• Server-side load balance factor calculation

In contrast with traditional httpd-based load balancers, mod_proxy_cluster uses load balance
factors calculated and provided by the application servers rather than computing these in the
proxy. Consequently, mod_proxy_cluster offers a more robust and accurate set of load metrics than
is available from the proxy (see Load Metrics for more).

• Fine-grained web-app lifecycle control

Traditional httpd-based load balancers do not handle web application undeployments particularly
well. From the proxy’s perspective, requests to an undeployed web application are
indistinguishable from a request for a non-existent resource and will result in 404 errors. In
mod_cluster, each server forwards any web application context lifecycle events (e.g. web-app
deploy/undeploy) to the proxy, informing it to start/stop routing requests for a given context to that
server.

• AJP is optional

Unlike mod_jk, mod_proxy_cluster does not require AJP. httpd connections to application server
nodes can use HTTP, HTTPS, or AJP. The original concepts are described in a Design article.

1.4. Requirements

1.4.1. Balancer side

• Apache HTTP Server 2.4.53 and newer for mod_proxy_cluster 2.x

developer/index.pdf#mod_cluster-design

• Apache HTTP Server 2.4.49 and newer for mod_proxy_cluster/mod_cluster 1.3.x

1.4.2. Worker side

The mod_cluster container integration module (implemented in Java) is provided for all the
following containers:

• WildFly 8 and newer

• JBoss AS 7

• Tomcat 6 and newer

1.5. Limitations
mod_proxy_cluster uses shared memory to keep the nodes description, the shared memory is
created at the start of httpd and the structure of each item is fixed. The following cannot be
changed by configuration directives.

• Max Alias length 255 characters in 2.x, 100 characters in 1.3.x (Host: hostname header, Alias
in<Host/>).

• Max context length 80 (for example myapp.war deploys in /myapp/myapp is the context).

• Max balancer name length 40 (balancer property in mbean).

• Max JVMRoute string length is PROXY_WORKER_MAX_ROUTE_SIZE characters in 2.x, 64
characters in 1.3.x (JVMRoute in <Engine/>).

• Max load balancing group name length 20 (domain property in mbean).

• Max hostname length for a node 64 (address in the <Connector/>).

• Max port length for a node 7 (8009 is 4 characters, port in the <Connector/>).

• Max scheme length for a node 16 (possible values are http, https, ajp, liked with the protocol of
<Connector/>).

• Max cookie name 30 (the header cookie name for sessionid default value: JSESSIONID from
org.apache.catalina.Globals.SESSION_COOKIE_NAME).

• Max path name 30 (the parameter name for the sessionid default value: jsessionid from
org.apache.catalina.Globals.SESSION_PARAMETER_NAME).

• Max length for a sessionid 120 (something like
BE81FAA969BF64C8EC2B6600457EAAAA.node01).

1.6. Downloads
Download the latest mod_cluster release.

The release contains the source to build the WildFly/JBoss AS/Tomcat Java distributions

The native part is developed in https://github.com/modcluster/mod_proxy_cluster (with 1.3.x
version and older available in the original repository https://github.com/modcluster/mod_cluster/

https://modcluster.io/downloads/
https://github.com/modcluster/mod_proxy_cluster
https://github.com/modcluster/mod_cluster/tree/1.3.x

tree/1.3.x). The native part is compatible with the 2.0.x and 1.4.x branches of mod_cluster

Alternatively, you can build from source using the mod_cluster git repository and
mod_proxy_cluster git repository.

1.7. Configuration
If you want to skip the details and just set up a minimal working installation of mod_cluster, see the
Quick Start Guide.

• Configuring balancer

• Configuring workers

1.8. Migration from mod_jk or mod_proxy
Migrating from mod_jk or mod_proxy is fairly straightforward. In general, much of the
configuration previously found in httpd.conf is now defined in the application server worker
nodes.

• Migrating from mod_jk

• Migrating from mod_proxy

1.9. SSL support
Both the request connections between httpd and the application server nodes, and the feedback
channel between the nodes and httpd can be secured. The former is achieved via the
mod_proxy_https module and a corresponding ssl-enabled HTTP connector in JBoss Web or
Undertow. The latter requires the mod_ssl module and explicit configuration in WildFly/JBoss
AS/Web/Undertow.

mod_cluster contains mod_ssl, therefore the warning (copied from OpenSSL website).



Strong cryptography: Please remember that export/import and/or use of strong
cryptography software, providing cryptography hooks, or even just
communicating technical details about cryptography software is illegal in some
parts of the world. So when you import this package to your country, re-distribute
it from there or even just email technical suggestions or even source patches to the
authors or other people you are strongly advised to pay close attention to any laws
or regulations which apply to you. The authors of openssl are not liable for any
violations you make here. So be careful, it is your responsibility.

https://github.com/modcluster/mod_cluster/tree/1.3.x
https://github.com/modcluster/mod_cluster
https://github.com/modcluster/mod_proxy_cluster
#quick-start-guide
#httpd
#container-integration-configuration
#migration-from-mod_jk
#migration-from-mod_proxy
#using-ssl-in-mod_cluster
#ssl-configuration
#ssl-configuration
https://www.openssl.org/

Chapter 2. Quick Start Guide

 Improve this page – edit on GitHub.

Following are the steps to set up a minimal working installation of mod_cluster on a single httpd
server and a single back end server, either JBoss AS, JBossWeb, Undertow or Tomcat. The steps can
be repeated to add as many httpd servers or back end servers to your cluster as desired.

The steps shown here are not intended to demonstrate how to set up a production install of
mod_proxy_cluster; for example, using SSL to secure access to the httpd-side mod_manager
component is not covered. See the balancer-side and worker-side configuration documentation for
the full set of configuration options.

2.1. Download mod_cluster components
Download the latest httpd and java release bundles. If there is no pre-built httpd bundle
appropriate for your OS or system architecture, you can build the Apache httpd binary from the
source.

2.2. Install the httpd binary

2.2.1. Install the whole httpd

Most of the standard distributions contain Apache httpd server. Use your platform’s specific install
tools to install. For example, in Fedora, just install as a root:

dnf install httpd

2.2.2. Install only the mod_cluster modules

If you already have a working httpd install that you would prefer to use and your distribution
contains mod_cluster/mod_proxy_cluster just install it:

dnf install mod_cluster

And then you have the files below in your module directory:

• mod_manager.so

• mod_proxy_cluster.so

• mod_advertise.so

• mod_cluster_slotmem.so (only 1.3.x version)

httpd version mismatch: [warn] httpd version mismatch detected Please, beware that one cannot
simply load the aforementioned modules into an arbitrary httpd installation. These modules were

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/quickstart.adoc
#using-ssl-in-mod_cluster
#httpd
#container-integration-configuration
#building-httpd-modules
#building-httpd-modules

built with a particular minor httpd version, and they cannot be used with an older one.

2.2.3. Install in Windows

Unzip the bundle corresponding to your architecture. Change to the bin directory of the subfolder
Apache24 where you unzipped the bundle.

You may run httpd directly by using:

httpd.exe

or install Apache HTTP Server as a service:

httpd.exe -k install -n myApache

and start the service via net start or using httpd.exe:

net start myApache

or

httpd.exe -k start

2.3. Configure httpd
httpd.conf might need to be configured to use mod_proxy_cluster.

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so
LoadModule watchdog_module modules/mod_watchdog.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so

<IfModule manager_module>
 Listen 127.0.0.1:6666
 ManagerBalancerName mycluster
 <VirtualHost 127.0.0.1:6666>
 <Location />
 Require ip 127.0.0
 </Location>

 EnableMCMPReceive

 <Location /mod_cluster_manager>
 SetHandler mod_cluster-manager
 Require ip 127.0.0
 </Location>

 </VirtualHost>
</IfModule>

For mod_proxy_cluster/mod_cluster 1.3.x you must load mod_cluster_slotmem module instead of
the httpd’s one. Simply change the line with slotmem_shm_module to following:

LoadModule cluster_slotmem_module modules/mod_cluster_slotmem.so

2.4. Install the worker-side binaries
Build the jar file using maven

mvn install

Your next step depends on whether your target server is JBoss AS 7.x, Tomcat 8, 8.5/9.0 or 10.x or
WildFly (Undertow).

2.4.1. Installing in Tomcat

Assuming $CATALINA_HOME indicates the root of your Tomcat install:

cp container/tomcat-[8.5,9.0,10.1]/target/*.jar $CATALINA_HOME/lib/
cp container/spi/target/*.jar $CATALINA_HOME/lib/
cp load-spi/target/*.jar $CATALINA_HOME/lib/
cp core/target/*.jar $CATALINA_HOME/lib/
cp dist/target/dependency/jboss-logging* $CATALINA_HOME/lib/

Note that you should copy only the tomcat files corresponding to your tomcat installation.

• tomcat-8.5 for tomcat 8.5.x

• tomcat-9.0 for tomcat 9.0.x

• tomcat-10.1 for tomcat 10.0.x and 10.1.x

2.4.2. Installing in WildFly

WildFly already includes mod_cluster integration so no extra installation steps are necessary. The
mod_cluster subsystem is pre-configured in the HA configurations. For WildFly-specific
configuration refer to WildFly documentation.

https://docs.wildfly.org/

2.5. Configuring the server-side

2.5.1. Configuring mod_cluster with JBoss AS 5.x+

No post-installation configuration necessary!

2.5.2. Configuring mod_cluster with standalone JBoss Web or Tomcat

Edit the $CATALINA_HOME/conf/server.xml file, adding the following next to the other <Listener/>
elements:

<Listener className=
"org.jboss.modcluster.container.catalina.standalone.ModClusterListener" proxyList=
"127.0.0.1:6666"/>

2.5.3. Start httpd

To start httpd do the following:

/opt/jboss/httpd/sbin/apachectl start

2.5.4. Start the back-end server

Starting JBoss AS

cd $JBOSS_HOME/bin
./run.sh -c all

Starting JBossWeb or Tomcat

cd $CATALINA_HOME
./startup.sh

Set up more back-end servers

Repeat the back-end server install and configuration steps for each server in your cluster.

2.6. Experiment with the Load Balancing Demo
Application
See demo.

#demo

Chapter 3. Container Integration
Configuration

 Improve this page – edit on GitHub.

3.1. JBoss AS
mod_cluster is supported in AS7 via the modcluster subsystem See AS7 modcluster subsystem
Configuration.

In JBoss AS 6 and older version mod_cluster’s configuration resides within the following file:

$JBOSS_HOME/server/$PROFILE/deploy/mod_cluster.sar/META-INF/mod_cluster-jboss-
beans.xml

The entry point for mod_cluster’s server-side configuration is the ModClusterListener bean, which
delegates web container (e.g. JBoss Web) specific events to a container agnostic event handler.

In general, the ModClusterListener bean defines:

1. A ContainerEventHandler in which to handle events from the web container.

2. A reference to the JBoss mbean server.

e.g.

<bean name="ModClusterListener" class=
"org.jboss.modcluster.container.jbossweb.JBossWebEventHandlerAdapter">
 <constructor>
 <parameter class="org.jboss.modcluster.container.ContainerEventHandler">
 <inject bean="ModClusterService"/>
 </parameter>
 <parameter class="javax.management.MBeanServer">
 <inject bean="JMXKernel" property="mbeanServer"/>
 </parameter>
 </constructor>
</bean>

3.1.1. Configuration Properties

The ModClusterConfig bean enumerates the configuration properties used by mod_cluster. For the
complete list of configuration properties and their default values, see the chapter entitled Server-
side Configuration Properties.

e.g.

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/container-integration.adoc

<bean name="ModClusterConfig" class="org.jboss.modcluster.config.ModClusterConfig"
mode="On Demand">
 <!-- Specify configuration properties here -->
</bean>

3.1.2. Tomcat connector

Like mod_jk and mod_proxy_balancer, mod_cluster requires a connector in your server.xml to
which to forward web requests. Unlike mod_jk and mod_proxy_balancer, mod_cluster is not
confined to AJP, but can use HTTP as well. While AJP is generally faster, an HTTP connector can
optionally be secured via SSL.

Since mod_cluster 1.4, the connector registered with the balancer is no longer automatically chosen
by mod_cluster and needs to be specified explicitly. The new attributes connectorPort and/or
connectorAddress need to be configured explicitly matching exactly one of the configured
connectors, e.g.:

<Listener className="org.jboss.modcluster.container.tomcat.ModClusterListener"
connectorPort="8009"/>

In mod_cluster version 1.3 and older, if multiple possible connectors are defined in your
server.xml, mod_cluster uses the following algorithm to choose between them:

1. If an native (APR) AJP connector is available, use it.

2. If an AJP connector is available, use it.

3. Otherwise, choose the HTTP connector with the highest max threads.


In case you are using portOffset on any connector you want to register with
balancer, set connectorPort to the value of its port attribute. Since 2.0.4.Final, the
mod_cluster will handle the offset on its own.

3.1.3. Node Identity

Like mod_jk and mod_proxy_balancer, mod_cluster identifies each node via a unique jvm route. By
default, mod_cluster uses the following algorithm to assign the jvm route for a given node:

1. Use the value from server.xml, <Engine jvmRoute="…"/>, if defined.

2. Generate a jvm route using the configured TODO. The default implementation does the
following:

3. Use the value of the jboss.mod_cluster.jvmRoute system property, if defined.

4. Generate a UUID.

While UUIDs are ideal for production systems, in a development or testing environment, it is useful
to know which node served a given request just by looking at the jvm route. In this case, you can
utilize the org.jboss.modcluster.SimpleJvmRouteFactory. The factory generates jvm routes of the

http://docs.jboss.org/jbossweb/2.1.x/config/engine.html

form:

bind-address:*port*:*engine-name*

3.2. JBoss Web & Tomcat
mod_cluster’s entire configuration for JBoss Web or Tomcat resides entirely within
$CATALINA_HOME/conf/server.xml.

This limits the adds the following constraints to mod_cluster’s feature set:

• Only non-clustered mode is supported

• Only a single load metric can be used to calculate the load factor.

3.2.1. Lifecycle Listener

The entry point for JBoss Web and Tomcat configuration is the ModClusterListener. All mod_cluster
configuration properties are defined as attributes of the <Listener/> element. For the complete list
of configuration properties and their default values, see the chapter entitled "Server-side
Configuration Properties".

e.g.

<Listener className=
"org.jboss.modcluster.container.catalina.standalone.ModClusterListener" advertise=
"true"/>

3.2.2. Additional Tomcat dependencies

mod_cluster uses jboss-logging, which exists in JBoss Web, but not in Tomcat. Consequently, to use
mod_cluster with Tomcat, it is necessary to add jboss-logging-spi.jar to $CATALINA_HOME/lib.

3.3. AS7 modcluster subsystem Configuration
JBoss Application Server 7+ mod_cluster subsystem configuration.

3.3.1. ModCluster Subsystem in JBoss AS7

The mod_cluster integration is done via the modcluster subsystem.

3.3.2. ModCluster Subsystem minimal configuration

The minimal configuration is having the modcluster schemaLocation in the schemaLocation list:

<extension module="org.jboss.as.modcluster"/>

http://repository.jboss.org/nexus/content/groups/public-jboss/org/jboss/logging/jboss-logging-spi/

and subsystem declaration like:

<subsystem xmlns="urn:jboss:domain:modcluster:2.0"/>

With that configuration modcluster will listen for advertise on 224.0.1.105:23364.

3.4. ModCluster Subsystem configuration

3.4.1. mod-cluster-config Attributes

3.4.2. Proxy Discovery Configuration

Attribute Property Default

proxy-list proxyList none

proxy-url proxyURL none

advertise advertise true

advertise-security-key advertiseSecurityKey none

excluded-contexts excludedContexts none

auto-enable-contexts autoEnableContexts true

stop-context-timeout stopContextTimeout 10 (in seconds)

socket-timeout nodeTimeout 20 (in seconds)

3.4.3. Proxy Configuration

Attribute Property Default

sticky-session stickySession true

sticky-session-remove stickySessionRemove false

sticky-session-force stickySessionForce false

node-timeout workerTimeout -1

max-attempts maxAttempts 1

flush-packets flushPackets false

flush-wait flushWait -1

ping ping 10

smax smax -1 (it uses default value)

ttl ttl -1 (it uses default value)

domain loadBalancingGroup none

load-balancing-group loadBalancingGroup none

3.4.4. SSL Configuration

3.4.5. simple-load-provider Attributes

The simple load provider always sends the same load factor. Its purpose is testing, experiments and
special scenarios such as hot stand-by.

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">
 <mod-cluster-config>
 <simple-load-provider factor="1"/>
 </mod-cluster-config>
</subsystem>

Attribute Property Default

factor LoadBalancerFactor 1

3.4.6. dynamic-load-provider Attributes

The dynamic load provide allows to have load-metric as well as custom-load-metric defined. For
example:

<subsystem xmlns="urn:jboss:domain:modcluster:1.0">
 <mod-cluster-config advertise-socket="mod_cluster">
 <dynamic-load-provider history="10" decay="2" initial-load="50">
 <load-metric type="cpu" weight="2" capacity="1"/>
 <load-metric type="sessions" weight="1" capacity="512"/>
 <custom-load-metric class="mypackage.myclass" weight="1" capacity="512">
 <property name="myproperty" value="myvalue" />
 <property name="otherproperty" value="othervalue" />
 </custom-load-metric>
 </dynamic-load-provider>
 </mod-cluster-config>
</subsystem>

Attribute Property Default

history history 512

decay decayFactor 512

initialLoad initialLoad 0

3.4.7. load-metric Configuration

The load-metric are the "classes" collecting information to allow computation of the load factor sent
to httpd.

Attribute Property Default

type A Server-Side Load Metric mandatory

weight weight 9

capacity capacity 512

3.4.8. Built-in Load Metric Types

Type Corresponding Server-Side Load Metric

cpu AverageSystem

heap HeapMemoryUsage

sessions ActiveSessions

requests RequestCount

send-traffic SendTraffic

receive-traffic ReceiveTraffic

busyness BusyConnectors

connection-pool ConnectionPoolUsage


The mem (SystemMemoryUsage) load metric has been removed since version 1.3, see
MODCLUSTER-288 for more context.

3.4.9. custom-load-metric Configuration

The custom-load-metric are for user defined "classes" collecting information. They are like the load-
metric except type is replaced by class:

Attribute Property Default

class Name of your class Mandatory

See an Example Custom Load Metric that reads load from a local file.

3.4.10. load-metric Configuration with the JBoss AS7 CLI

The load-metric have 4 commands to add and remove metrics

• add-metric: Allows to add a load-metric to the dynamic-load-provider, e.g.

./:add-metric(type=cpu, weight=2, capacity=1)

• remove-metric: Allows to remove a load-metric from the dynamic-load-provider, e.g.

./:remove-metric(type=cpu)

#average-system-load-metric
#heap-memory-usage-load-metric
#active-sessions-load-metric
#request-count-load-metric
#send-traffic-load-metric
#receive-traffic-load-metric
#busy-connectors-load-metric
#connection-pool-usage-load-metric
https://issues.redhat.com/browse/MODCLUSTER-288
https://github.com/Karm/mod_cluster-custom-load-metric

• add-custom-metric: Allows to add a load-custom-metric to the dynamic-load-provider, e.g.

./:add-custom-metric(class=myclass, weight=2, capacity=1, property=[("pool" =>
"mypool"), ("var" => "myvariable")])

• remove-custom-metric: Allows to remove a load-custom-metric from the dynamic-load-
provider, e.g.

./:remove-custom-metric(class=myclass)

3.5. Building worker-side Components

3.5.1. Requirements

Building mod_cluster’s worker-side components from source requires the following tools:

• JDK 5.0+

• Maven 2.0+

3.5.2. Building

Steps to build:

1. Download the mod_cluster sources

git clone git://github.com/modcluster/mod_cluster.git

2. Use maven "dist" profile to build:

cd mod_cluster
mvn -P dist package


Some unit tests require UDP port 23365. Make sure your local firewall allows the
port.

3.5.3. Built Artifacts

The build produces the following output in the target directory:

• mod-cluster.sar Exploded format sar to copy to the deploy dir in your JBoss AS install.

• JBossWeb-Tomcat/lib directory Jar files to copy to the lib directory in your JBossWeb or Tomcat
install to support use of mod_cluster.

• demo directory The load balancing demo application.

• mod-cluster-XXX.tar.gz The full distribution tarball; includes the aforementioned elements.

3.5.4. worker-side Configuration Properties

The tables below enumerate the configuration properties available to an application server node.
The location for these properties depends on how mod_cluster is configured.

Proxy Discovery Configuration

The list of proxies from which an application expects to receive AJP connections is either defined
statically, via the addresses defined in the proxyList configuration property; or discovered
dynamically via the advertise mechanism. Using a special mod_advertise module, proxies can
advertise their existence by periodically broadcasting a multicast message containing their
address:port. This functionality is enabled via the advertise configuration property. If configured to
listen, a server can learn of the proxy’s existence, then notify that proxy of its own existence, and
update its configuration accordingly. This frees both the proxy and the server from having to define
static, environment-specific configuration values.

Session draining strategy

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

sessionDrainin
gStrategy

session-
draining-
strategy

DEFAULT Worker Worker

Indicates the session draining strategy used during undeployment of a web application. There are
three possible values:

• DEFAULT: Drain sessions before web application undeploy only if the web application is non-
distributable.

• ALWAYS: Always drain sessions before web application undeploy, even for distributable web
applications.

• NEVER: Do not drain sessions before web application undeploy, even for non-distributable web
application.

Proxies

Tomcat
attribute

AS7
attribute

WildFly
attribute

Default Location Scope

proxyList proxy-list proxies None Worker Worker

• Tomcat/AS7: Defines a comma delimited list of httpd proxies with which this node will initially
communicate. Value should be of the form: address1:*port1*,address2:*port2*. Using the
default configuration, this property can by manipulated via the jboss.mod_cluster.proxyList
system property.

• WildFly: In WildFly, the proxy-list attribute of the modcluster subsystem element is

deprecated. Instead, one uses an output socket binding. The following example leverages jboss-
cli.sh, e.g. :

• Add a socket binding: /socket-binding-group=standard-sockets/remote-destination-outbound-
socket-binding=my-proxies:add(host=10.10.10.11, port=3333)

• Add the socket binding to the modcluster subsystem: /subsystem=modcluster/mod-cluster-
config=configuration:write-attribute(name=proxies, value="my-proxies")

Excluded contexts

Tomcat
attribute

AS7/WildFly
attribute

WildFly
Default

Tomcat/AS7
Default

Location Scope

excludedCon
texts

excluded-
contexts

None ROOT,
admin-
console,
invoker,
bossws, jmx-
console,
juddi, web-
console

Worker Worker

List of contexts to exclude from httpd registration, of the form: host1:*context1*,host2
:*context2*,host3:*context3* If no host is indicated, it is assumed to be the default host of the server
(e.g. localhost). "ROOT" indicates the root context. Using the default configuration, this property can
by manipulated via the jboss.mod_cluster.excludedContexts system property.

Auto Enable Contexts

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

autoEnableCon
texts

auto-enable-
contexts

true Worker Worker

If false the contexts are registered disabled in httpd, they need to be enabled via the enable()
mbean method, jboss-cli command or via mod_cluster-manager web console on Apache HTTP
Server.

Stop context timeout

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

stopContextTi
meout

stop-context-
timeout

10 s Worker Worker

The amount of time in seconds for which to wait for a clean shutdown of a context (completion of
pending requests for a distributable context; or destruction/expiration of active sessions for a non-
distributable context).

Stop context timeout unit

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

stopContextTi
meoutUnit

None TimeUnit.SECO
NDS

Worker Worker

Tomcat allows for configuring an arbitrary TimeUnit for Stop context timeout

Proxy URL

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

proxyURL proxy-url / Worker Balancer

If defined, this value will be prepended to the URL of MCMP commands.

Socket timeout

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

socketTimeout socket-timeout 20 s Worker Worker

How long to wait for a response from an httpd proxy to MCMP commands before timing out, and
flagging the proxy as in error.

Advertise

Tomcat/AS7/Wild
Fly attribute

Default Location Scope

advertise true, if proxyList
is undefined, false
otherwise

Worker Worker

If enabled, httpd proxies will be auto-discovered via receiving multicast announcements. This can
be used either in concert or in place of a static proxies.

Advertise socket group

Tomcat
attribute

AS7/WildFly
attribute

Default Location Scope

advertiseGroup
Address

advertise-
socket

224.0.1.105 Worker Worker

advertisePort in advertise-
socket

23364 Worker Worker

UDP multicast address:port on which to listen for httpd proxy multicast advertisements. Beware of
the actual interface your balancer/worker sends to/receives from. See MODCLUSTER-487 for
Apache HTTP Server behaviour and MODCLUSTER-495 for Tomcat’s caveat.

Advertise security key

Tomcat attribute AS7/WildFly
attribute

Default Location Scope

advertiseSecurity
Key

advertise-security-
key

None Worker Balancer

If specified, httpd proxy advertisements checksums (using this value as a salt) will be required to be
verified on the server side. This option does not secure your installation, it does not replace proper
SSL configuration. It merely ensures that only certain workers can talk to certain balancers. Beware
of MODCLUSTER-446.

Advertise thread factory

Tomcat attribute AS7/WildFly
attribute

Default Location Scope

advertiseThreadFa
ctory

None Executors.defaultT
hreadFactory()

Worker Worker

The thread factory used to create the background advertisement listener.

JVMRoute factory

Tomcat attribute AS7/WildFly
attribute

Default Location Scope

jvmRouteFactory None new
SystemPropertyJv
mRouteFactory(ne
w
UUIDJvmRouteFac
tory(),
"jboss.mod_cluster
.jvmRoute")

Worker Worker

Defines the strategy for determining the jvm route of a node, if none was specified in Tomcat’s
server.xml. The default factory first consults the jboss.mod_cluster.jvmRoute system property. If this
system property is undefined, the jvm route is assigned a UUID. WildFly with Undertow web
subsystem uses Undertow’s instance-id or jboss.mod_cluster.jvmRoute system property or a UUID.

3.5.5. Proxy Configuration

The following configuration values are sent to proxies during server startup, when a proxy is
detected via the advertise mechanism, or during the resetting of a proxy’s configuration during

https://issues.redhat.com/browse/MODCLUSTER-487
https://issues.redhat.com/browse/MODCLUSTER-495
https://issues.redhat.com/browse/MODCLUSTER-446

error recovery.

Attribute AS7 Attribute Default Scope Description

stickySession sticky-session true Balancer Indicates whether
subsequent
requests for a
given session
should be routed
to the same node,
if possible.

stickySessionRemo
ve

sticky-session-
remove

false Balancer Indicates whether
the httpd proxy
should remove
session stickiness
in the event that
the balancer is
unable to route a
request to the
node to which it is
stuck. This
property is
ignored if
stickySession is
false.

stickySessionForce sticky-session-
force

false Balancer Indicates whether
the httpd proxy
should return an
error in the event
that the balancer
is unable to route
a request to the
node to which it is
stuck. This
property is
ignored if
stickySession is
false.

Attribute AS7 Attribute Default Scope Description

workerTimeout worker-timeout -1 Balancer Number of
seconds to wait for
a worker to
become available
to handle a
request. When no
workers of a
balancer are
usable,
mod_cluster will
retry after a while
(workerTimeout/1
00). That is
timeout in the
balancer
mod_proxy
documentation. A
value of -1
indicates that the
httpd will not wait
for a worker to be
available and will
return an error if
none is available.

maxAttempts max-attempts 1 Balancer Maximum number
of failover
attempts before
giving up. The
minimum value is
0, i.e. no failover.
The default value
is 1, i.e. do a one
failover attempt.

flushPackets flush-packets false Node Enables/disables
packet flushing

flushWait flush-wait -1 Node Time to wait
before flushing
packets in
milliseconds. A
value of -1 means
wait forever.

Attribute AS7 Attribute Default Scope Description

ping ping 10 Node Time (in seconds)
in which to wait
for a pong answer
to a ping

smax smax Determined by
httpd
configuration

Node Soft maximum
idle connection
count (that is the
smax in worker
mod_proxy
documentation).
The maximum
value depends on
the httpd thread
configuration
(ThreadsPerChild
or 1).

ttl ttl 60 Node Time to live (in
seconds) for idle
connections above
smax

Attribute AS7 Attribute Default Scope Description

nodeTimeout node-timeout -1 Node Timeout (in
seconds) for proxy
connections to a
node. That is the
time mod_cluster
will wait for the
back-end response
before returning
error. That
corresponds to
timeout in the
worker
mod_proxy
documentation. A
value of -1
indicates no
timeout. Note that
mod_cluster
always uses a
cping/cpong
before forwarding
a request and the
connectiontimeout
value used by
mod_cluster is the
ping value.

balancer balancer mycluster Node The balancer
name

loadBalancingGro
up

domain load-
balancing-group

None Node If specified, load
will be balanced
among jvmRoutes
withing the same
load balancing
group. A
loadBalancingGro
up is conceptually
equivalent to a
mod_jk domain
directive. This is
primarily used in
conjunction with
partitioned
session replication
(e.g. buddy
replication).


When nodeTimeout is not defined the ProxyTimeout directive Proxy is used. If
ProxyTimeout is not defined the server timeout (Timeout) is used (default 300
seconds). nodeTimeout, ProxyTimeout or Timeout is set at the socket level.

SSL Configuration

The communication channel between application servers and httpd proxies uses HTTP by default.
This channel can be secured using HTTPS by setting the ssl property to true.


This HTTP/HTTPS channel should not be confused with the processing of
HTTP/HTTPS client requests.

Attribute AS7 Attribute Default Description

ssl None false Should connection to
proxy use a secure
socket layer

sslCiphers cipher-suite The default JSSE cipher
suites

Overrides the cipher
suites used to initialize
an SSL socket ignoring
any unsupported
ciphers

sslProtocol protocol TLS (ALL in AS7) Overrides the default
SSL socket protocol.

sslCertificateEncodingA
lgorithm

None The default JSSE key
manager algorithm

The algorithm of the
key manager factory

sslKeyStore certificate-key-file System.getProperty("us
er.home") + "/.keystore"

The location of the key
store containing client
certificates

sslKeyStorePassword password changeit The password granting
access to the key store
(and trust store in AS7)

sslKeyStoreType None JKS The type of key store

sslKeyStoreProvider None The default JSSE
security provider

The key store provider

sslTrustAlgorithm None The default JSSE trust
manager algorithm

The algorithm of the
trust manager factory

sslKeyAlias key-alias The alias of the key
holding the client
certificates in the key
store

sslCrlFile ca-revocation-url Certificate revocation
list

Attribute AS7 Attribute Default Description

sslTrustMaxCertLength None 5 The maximum length
of a certificate held in
the trust store

sslTrustStore None javax.net.ssl.trustStore
Password

The location of the file
containing the trust
store

sslTrustStorePassword None javax.net.ssl.trustStore The password granting
access to the trust store.

sslTrustStoreType None javax.net.ssl.trustStore
Type

The trust store type

sslTrustStoreProvider None javax.net.ssl.trustStore
Provider

The trust store provider

Load Configuration for JBoss Web and Tomcat

Additional configuration properties used when mod_cluster is configured in JBoss Web standalone
or Tomcat.

Attribute Default Description

loadMetricClass org.jboss.modcluster.load.metri
c.impl.BusyConnectorsLoadMet
ric

Class name of an object
implementing
org.jboss.load.metric.LoadMetr
ic.

loadMetricCapacity 1 The capacity of the load metric
defined via the loadMetricClass
property.

loadHistory 9 The number of historic load
values to consider in the load
balance factor computation.

loadDecayFactor 2 The factor by which a historic
load values should degrade in
significance.

initialLoad 0 Initial load within the range
[0..100] with which to
prepopulate historical values.
Used to gradually drive load to
the node. Value of 0
prepopulates with full load and
value of -1 disables this
behavior.

3.6. Worker-side Load Metrics
A major feature of mod_cluster is the ability to use server-side load metrics to determine how best
to balance requests.

The DynamicLoadBalanceFactorProvider bean computes the load balance factor of a node from a
defined set of load metrics.

<bean name="DynamicLoadBalanceFactorProvider" class=
"org.jboss.modcluster.load.impl.DynamicLoadBalanceFactorProvider" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Load
BalanceFactorProvider",exposedInterface=org.jboss.modcluster.load.impl.DynamicLoadBala
nceFactorProviderMBean.class)</annotation>
 <constructor>
 <parameter>
 <set elementClass="org.jboss.modcluster.load.metric.LoadMetric">
 <inject bean="BusyConnectorsLoadMetric"/>
 <inject bean="HeapMemoryUsageLoadMetric"/>
 </set>
 </parameter>
 </constructor>
 <property name="history">9</property>
 <property name="decayFactor">2</property>
 <property name="initialLoad">0</property>
</bean>

Load metrics can be configured with an associated weight and capacity.

The weight (default is 1) indicates the significance of a metric with respect to the other metrics. For
example, a metric of weight 2 will have twice the impact on the overall load factor than a metric of
weight 1.

The capacity of a metric serves 2 functions:

• To normalize the load values from each metric. In some load metrics, capacity is already
reflected in the load values. The capacity of a metric should be configured such that 0 <= (load
/ capacity) <= 1.

• To favor some nodes over others. By setting the metric capacities to different values on each
node, proxies will effectively favor nodes with higher capacities, since they will return smaller
load values. This adds an interesting level of granularity to node weighting. Consider a cluster of
two nodes, one with more memory, and a second with a faster CPU; and two metrics, one
memory-based and the other CPU-based. In the memory-based metric, the first node would be
given a higher load capacity than the second node. In a CPU-based metric, the second node
would be given a higher load capacity than the first node.

Each load metric contributes a value to the overall load factor of a node. The load factors from each
metric are aggregated according to their weights.

In general, the load factor contribution of a given metric is: (load / capacity) * weight / total
weight.

The DynamicLoadBalanceFactorProvider applies a time decay function to the loads returned by
each metric. The aggregate load, with respect to previous load values, can be expressed by the
following formula:

L = (L0/D
0 + L 1/D

1 + L2/D
2 + L3/D

3 + ... + LH/DH) / (1/D0 + 1/D1 + 1/D2 + 1/D3 + ... 1/DH)

i. or more concisely as:

L = (∑H
i=0 Li/D

i) / (∑H
i=0 1/Di)

i. where D = decayFactor, and H = history.

Setting history = 0 effectively disables the time decay function and only the current load for each
metric will be considered in the load balance factor computation.

The mod_cluster load balancer expects the load factor to be an integer between 0 and 100, where 0
indicates max load and 100 indicates zero load. Therefore, the final load factor sent to the load
balancer

LFinal = 100 - (L * 100)

While you are free to write your own load metrics, the following LoadMetrics are available out of
the box:

3.6.1. Web Container metrics

Active Sessions Load Metric

• Requires an explicit capacity

• Uses SessionLoadMetricSource to query session managers

• Analogous to method=S in mod_jk

e.g., with JBoss AS 5:

<bean name="ActiveSessionsLoadMetric" class=
"org.jboss.modcluster.load.metric.impl.ActiveSessionsLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Acti
veSessionsLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBea
n.class)</annotation>
 <constructor>
 <parameter><inject bean="SessionLoadMetricSource"/></parameter>
 </constructor>
 <property name="capacity">1000</property>
</bean>
<bean name="SessionLoadMetricSource" class=
"org.jboss.modcluster.load.metric.impl.SessionLoadMetricSource" mode="On Demand">

 <constructor>
 <parameter class="javax.management.MBeanServer">
 <inject bean="JMXKernel" property="mbeanServer"/>
 </parameter>
 </constructor>
</bean>

Busy Connectors Load Metric

• Returns the percentage of connector threads from the thread pool that are busy servicing
requests

• Uses ThreadPoolLoadMetricSource to query connector thread

• Analogous to method=B in mod_jk

• BusyConnectorsLoadMetric.java

e.g., with JBoss AS 5:

<bean name="BusyConnectorsLoadMetric" class=
"org.jboss.modcluster.load.metric.impl.BusyConnectorsLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Busy
ConnectorsLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBea
n.class)</annotation>
 <constructor>
 <parameter><inject bean="ThreadPoolLoadMetricSource"/></parameter>
 </constructor>
</bean>
<bean name="ThreadPoolLoadMetricSource" class=
"org.jboss.modcluster.load.metric.impl.ThreadPoolLoadMetricSource" mode="On Demand">
 <constructor>
 <parameter class="javax.management.MBeanServer">
 <inject bean="JMXKernel" property="mbeanServer"/>
 </parameter>
 </constructor>
</bean>

Receive Traffic Load Metric

• Returns the incoming request POST traffic in KB/sec (the application needs to read POST data)

• Requires an explicit capacity

• Uses RequestProcessorLoadMetricSource to query request processors

• Analogous to method=T in mod_jk

e.g., with JBoss AS 5:

<bean name="ReceiveTrafficLoadMetric" class=

https://github.com/modcluster/mod_cluster/blob/main/core/src/main/java/org/jboss/modcluster/load/metric/impl/BusyConnectorsLoadMetric.java

"org.jboss.modcluster.load.metric.impl.ReceiveTrafficLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Rece
iveTrafficLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBea
n.class)</annotation>
 <constructor>
 <parameter class=
"org.jboss.modcluster.load.metric.impl.RequestProcessorLoadMetricSource">
 <inject bean="RequestProcessorLoadMetricSource"/>
 </parameter>
 </constructor>
 <property name="capacity">1024</property>
</bean>
<bean name="RequestProcessorLoadMetricSource" class=
"org.jboss.modcluster.load.metric.impl.RequestProcessorLoadMetricSource" mode="On
Demand">
 <constructor>
 <parameter class="javax.management.MBeanServer">
 <inject bean="JMXKernel" property="mbeanServer"/>
 </parameter>
 </constructor>
</bean>

Send Traffic Load Metric

• Returns the outgoing request traffic in KB/sec

• Requires an explicit capacity

• Uses RequestProcessorLoadMetricSource to query request processors

• Analogous to method=T in mod_jk

e.g., with JBoss AS 5:

<bean name="SendTrafficLoadMetric" class=
"org.jboss.modcluster.load.metric.impl.SendTrafficLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Send
TrafficLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBean.c
lass)</annotation>
 <constructor>
 <parameter class=
"org.jboss.modcluster.load.metric.impl.RequestProcessorLoadMetricSource">
 <inject bean="RequestProcessorLoadMetricSource"/>
 </parameter>
 </constructor>
 <property name="capacity">512</property>
</bean>

Request Count Load Metric

• Returns the number of requests/sec

• Requires an explicit capacity

• Uses RequestProcessorLoadMetricSource to query request processors

• Analogous to method=R in mod_jk

e.g., with JBoss AS 5:

<bean name="RequestCountLoadMetric" class=
"org.jboss.modcluster.load.metric.impl.RequestCountLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Requ
estCountLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBean.
class)</annotation>
 <constructor>
 <parameter class=
"org.jboss.modcluster.load.metric.impl.RequestProcessorLoadMetricSource">
 <inject bean="RequestProcessorLoadMetricSource"/>
 </parameter>
 </constructor>
 <property name="capacity">1000</property>
</bean>

3.6.2. System/JVM metrics

Average System Load Metric

• Returns CPU load

• Requires Java 1.6+

• Uses OperatingSystemLoadMetricSource to generically read attributes

• Is not available on Windows

• AverageSystemLoadMetric.java

e.g., with JBoss AS 5:

<bean name="AverageSystemLoadMetric" class=
"org.jboss.modcluster.load.metric.impl.AverageSystemLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Aver
ageSystemLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBean
.class)</annotation>
 <constructor>
 <parameter><inject bean="OperatingSystemLoadMetricSource"/></parameter>
 </constructor>
</bean>

https://github.com/modcluster/mod_cluster/blob/main/core/src/main/java/org/jboss/modcluster/load/metric/impl/AverageSystemLoadMetric.java

<bean name="OperatingSystemLoadMetricSource" class=
"org.jboss.modcluster.load.metric.impl.OperatingSystemLoadMetricSource" mode="On
Demand">
</bean>

Heap Memory Usage Load Metric

• Returns the heap memory usage as a percentage of max heap size

e.g., with JBoss AS 5:

<bean name="HeapMemoryUsageLoadMetric" class=
"org.jboss.modcluster.load.metric.impl.HeapMemoryUsageLoadMetric" mode="On Demand">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Heap
MemoryUsageLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetricMBe
an.class)</annotation>
</bean>

3.6.3. Other metrics

ConnectionPoolUsageLoadMetric

• Returns the percentage of connections from a connection pool that are in use

• Uses ConnectionPoolLoadMetricSource to query JCA connection pools

e.g., with JBoss AS 5:

<bean name="ConnectionPoolUsageMetric" class=
"org.jboss.modcluster.load.metric.impl.ConnectionPoolUsageLoadMetric" mode="On Demand
">

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name="jboss.web:service=Conn
ectionPoolUsageLoadMetric",exposedInterface=org.jboss.modcluster.load.metric.LoadMetri
cMBean.class)</annotation>
 <constructor>
 <parameter><inject bean="ConnectionPoolLoadMetricSource"/></parameter>
 </constructor>
</bean>
<bean name="ConnectionPoolLoadMetricSource" class=
"org.jboss.modcluster.load.metric.impl.ConnectionPoolLoadMetricSource" mode="On
Demand">
 <constructor>
 <parameter class="javax.management.MBeanServer">
 <inject bean="JMXKernel" property="mbeanServer"/>
 </parameter>
 </constructor>

</bean>

3.7. Installing Worker-side Components
First, extract the server-side binary to a temporary directory. The following assumes it was
extracted to /tmp/mod_cluster

Your next step depends on whether your target server is JBoss AS or JBossWeb/Tomcat.

3.7.1. Installing in JBoss AS 6.0.0.M1 and up

You don’t need to do anything to install the java-side binaries in AS 6.x; it’s part of the AS
distribution’s default, standard and all configurations.

3.7.2. Installing in JBoss AS 5.x

Assuming \$JBOSS_HOME indicates the root of your JBoss AS install and that you want to use
mod_cluster in the AS’s all config:

cp -r /tmp/mod_cluster/mod_cluster.sar $JBOSS_HOME/server/all/deploy

3.7.3. Installing in Tomcat

Assuming $CATALINA_HOME indicates the root of your Tomcat install:

cp /tmp/mod_cluster/JBossWeb-Tomcat/lib/jboss-logging.jar $CATALINA_HOME/lib/
cp /tmp/mod_cluster/JBossWeb-Tomcat/lib/mod_cluster-container-catalina*
$CATALINA_HOME/lib/
cp /tmp/mod_cluster/JBossWeb-Tomcat/lib/mod_cluster-container-spi* $CATALINA_HOME/lib/
cp /tmp/mod_cluster/JBossWeb-Tomcat/lib/mod_cluster-core* $CATALINA_HOME/lib/

and additionally for Tomcat6:

cp /tmp/mod_cluster/JBossWeb-Tomcat/lib/mod_cluster-container-tomcat6*
$CATALINA_HOME/lib

and additionally for Tomcat7:

cp /tmp/mod_cluster/JBossWeb-Tomcat/lib/mod_cluster-container-tomcat7*
$CATALINA_HOME/lib

Chapter 4. httpd configuration

 Improve this page – edit on GitHub.

4.1. Apache httpd configuration
You need to load the modules that are needed for mod_proxy_cluster for example:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so
LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so



mod_cluster 1.3.x Note that mod_cluster 1.3.x has its own implementation of a
slotmem module. You have to change the appropriate line to LoadModule
cluster_slotmem_module modules/mod_cluster_slotmem.so to use it instead of httpd’s
implementation version 2.x uses.

mod_proxy and mod_proxy_ajp are standard httpd modules. mod_cluster_slotmem is a shared
slotmem memory provider. mod_manager is the module that reads information from JBoss
AS/JBossWeb/Tomcat and updates the shared memory information. mod_proxy_cluster is the
module that contains the balancer for mod_proxy. mod_advertise is an additional module that
allows httpd to advertise via multicast packets the IP and port where the mod_proxy_cluster is
listening. This multi-module architecture allows the modules to easily be changed depending on
what the customer wants to do.

For example when using http instead of AJP, only remove the following line:

LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

Alternatively, if you want to use AJP only, remove the corresponding http line:

LoadModule proxy_http_module modules/mod_proxy_http.so

4.2. mod_proxy configuration
mod_proxy directives like ProxyIOBufferSize could be used to configure mod_proxy_cluster. There
is no need to use ProxyPass directives because mod_proxy_cluster automatically configures which
URLs have to be forwarded to JBossWEB.

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/native.adoc

4.3. mod_slotmem/mod_cluster_slotmem configuration
The current version does not require any configuration directives. Make sure you are using the
correct module according to your mod_proxy_cluster’s version.

4.4. mod_proxy_cluster

4.4.1. CreateBalancers

CreateBalancers define how balancers are created in the httpd VirtualHosts. This is to allow
directives like:

ProxyPass / balancer://mycluster1/

• 0 – Create in all VirtualHosts defined in httpd.

• 1 – Don’t create balancers (requires at least one ProxyPass/ProxyPassMatch to define the
balancer names).

• 2 – Create only the main server.

Default: 2


CreateBalancers 1: When using 1 don’t forget to configure the balancer in the
ProxyPass directive, because the default is empty stickysession and nofailover=Off
and the values received via the MCMP CONFIG message are ignored.



Default: 2 If you have no ProxyPass directive in the VirtualHost, the VirtualHost is
ignored by mod_proxy_cluster. So, even if CreateBalancers is set to 2 (default), the
main server is used instead in such configuration. See also MODCLUSTER-430 –
CreateBalancers behave the same with option 0 or 2

4.4.2. UseAlias

Check that the Alias corresponds to the ServerName (See Host Name Aliases).

• Off – Don’t check (ignore Aliases)

• On – Check aliases

Default: Off Ignore the Alias information from the nodes.


Older mod_cluster versions: Versions older than 1.3.1.Final only accept values 0
and 1 respectively.

 UseAlias should be used with ProxyPreserveHost On to work properly.

https://issues.redhat.com/browse/MODCLUSTER-430
https://issues.redhat.com/browse/MODCLUSTER-430
http://labs.jboss.com/file-access/default/members/jbossweb/freezone/docs/latest/config/host.html

4.4.3. LBstatusRecalTime

Time interval in seconds for load balancing logic to recalculate the status of a node.

Default: 5 seconds

The actual formula to recalculate the status of a node is:

status = lbstatus + (elected - oldelected) * 1000) / lbfactor;

lbfactor is received for the node via STATUS messages.lbstatus is recalculated every
LBstatusRecalTime seconds using the formula: lbstatus = (elected - oldelected) * 1000) /
lbfactor

where elected is the amount of time the worker has been elected. oldelected is elected from the last
time the lbstatus was recalculated. The node with the lowest status is selected. Nodes with lbfactor
≤ 0 are skipped by the both calculation logics.

4.4.4. WaitBeforeRemove

Time in seconds before a removed node is forgotten by httpd.

Default: 10 seconds

4.4.5. ProxyPassMatch/ProxyPass

ProxyPassMatch and ProxyPass are mod_proxy directives that when using ! (instead the back-end
url) prevent to reverse-proxy in the path. This could be used allow httpd to serve static information
like images.

ProxyPassMatch ^(/.*\.gif)$!

The above for example will allow httpd to serve the .gif files directly.

4.4.6. EnableOptions

Use OPTIONS method to periodically check the active connection. Fulfils the same role as the
CPING/CPONG used by AJP but for HTTP/HTTPS connections. The endpoint needs to implement
HTTP/1.0.

• On (or no value) – Use OPTIONS

• Off – Don’t use OPTIONS

Default: On

4.4.7. AJPSecret

Use AJPSecret your_secret to provide the secret for the AJP back-end. See mod_proxy_ajp and

mod_proxy docs for more information. If your_secret doesn’t correspond to the value configured in
the back-end the back-end will return 503 to any request coming through the proxy.

4.4.8. EnableWsTunnel

Use ws or wss instead of http or https when creating nodes (allows WebSocket proxying).

4.4.9. WSUpgradeHeader

Use WSUpgradeHeader value to define the value of the upgrade header that is accepted (corresponds
to ProxyPass upgrade=value). Accepted values are following:

2.0 (in development) 1.3 mod_proxy_wstunnel
(used in the past)

Description

value value value protocol name to check
before using the WS
tunnel

* * ANY read the header value
from request

NONE bypass the header
check

See mod_proxy_http documentation for more information.

4.4.10. ResponseFieldSize

Size in bytes of the HTTP/1.1 buffers of the workers, that limits the header size a webapp can use
(Note: In Tomcat there is maxHttpHeaderSize that also limits it in the Connector).

Default: 8192

4.4.11. CacheShareFor

Time to cache the shared memory information in seconds.

Default: 0 (no-caching)

4.4.12. ModProxyClusterHCTemplate

Set of health check parameters to use with mod_proxy_cluster workers.

4.4.13. UseNocanon

When no ProxyPass or ProxyMatch match the URL, pass the raw URL path to the backend.

Default: Off

4.4.14. ResponseStatusCodeOnNoContext

Response code returned when ProxyPass or ProxyMatch doesn’t have any matching context. If the
configured value is not a standard HTTP response status code, the server will return 500 instead
(see MODCLUSTER-801). (Since 1.3.20.Final)

Default: 404

4.4.15. ModProxyClusterThreadCount

Number of threads that should be created for watchdog logic. Must be positive. (Since 2.0)

Default: 16

4.4.16. DeterministicFailover

Controls whether a node upon failover is chosen deterministically.

Default: Off

4.5. mod_manager
The Context of a mod_manger directive is VirtualHost except mentioned otherwise. server config
means that it must be outside a VirtualHost configuration. If not an error message will be displayed
and httpd will not start.

4.5.1. EnableMCMPReceive

EnableMCMPReceive – allow the VirtualHost to receive Mod-Cluster Management Protocol (MCMP)
messages. You need one EnableMCMPReceive in your httpd configuration to allow
mod_proxy_cluster to work, put it in the VirtualHost where you configure advertise.

This directive was added to address the issue of receiving MCMP on arbitrary VirtualHosts which
was problematic due to accepting messages on insecure, unintended VirtualHosts.

Default: disabled (presence of the directive enables this functionality)


This directive deprecates the original EnableMCPMReceive option as it contains a
typo. The directive with the correct spelling is available in version 1.3.21.Final and
newer.

4.5.2. MemManagerFile

That is the base name for the names mod_manager will use to store configuration, generate keys
for shared memory or lock files. The value may be an absolute path name or a relative one (then it
will be relative to the server root); the directories will be created if needed. It is highly
recommended that those files are placed on a local drive and not an NFS share. (Context: server
config)

https://issues.redhat.com/browse/MODCLUSTER-801

Default: $server_root/logs/

<script src="https://gist-
it.appspot.com/github/modcluster/mod_proxy_cluster/blob/main/native/mod_manager/mod_manage
r.c?slice=521:538&footer=minimal"></script>

4.5.3. Maxcontext

The maximum number of application contexts supported by mod_proxy_cluster. (Context: server
config)

Default: 100 (If Maxhost is bigger than Maxcontext, then Maxcontext is increased to Maxhost.)

<script src="https://gist-
it.appspot.com/github/modcluster/mod_proxy_cluster/blob/main/native/mod_manager/mod_manage
r.c?slice=55:56&footer=minimal"></script>

4.5.4. Maxnode

That is the maximum number of nodes supported by mod_proxy_cluster. (Context: server config)

Default: 20

<script src="https://gist-
it.appspot.com/github/modcluster/mod_proxy_cluster/blob/main/native/mod_manager/mod_manage
r.c?slice=56:57&footer=minimal"></script>

4.5.5. Maxhost

That is the maximum number of hosts (Aliases) supported by mod_proxy_cluster. That is also the
max number of balancers. (Context: server config)

Default: 20 (If Maxnode is bigger than Maxhost, then Maxhost is increased to Maxnode.)

<script src="https://gist-
it.appspot.com/github/modcluster/mod_proxy_cluster/blob/main/native/mod_manager/mod_manage
r.c?slice=57:58&footer=minimal"></script>

4.5.6. Maxsessionid

Maxsessionid: That is the number of active sessionid we store to give number of active sessions in
the mod_cluster-manager handler. A session is inactive when mod_cluster doesn’t receive any
information from the session in 5 minutes. (Context: server config)

Default: 0 (the logic is not activated).

4.5.7. MaxMCMPMaxMessSize

MaxMCMPMaxMessSize: Maximum size of MCMP messages. from other Max directives.

Default: calculated from other Max directives. Min: 1024

4.5.8. ManagerBalancerName

ManagerBalancerName: That is the name of balancer to use when the JBoss AS/JBossWeb/Tomcat
doesn’t provide a balancer name.

Default: mycluster

4.5.9. PersistSlots

PersistSlots: Tell mod_cluster_slotmem to persist the nodes, Alias and Context in files. (Context:
server config)

Default: Off

4.5.10. CheckNonce

CheckNonce: Switch check of nonce when using mod_cluster-manager handler on | off

Default: on (Nonce checked)

4.5.11. AllowDisplay

AllowDisplay: Switch additional display on mod_cluster-manager main page on | off

Default: off (Only version displayed)

4.5.12. AllowCmd

AllowCmd: Allow commands using mod_cluster-manager URL on | off

Default: on (Commands allowed)

4.5.13. ReduceDisplay

ReduceDisplay - Reduce the information the main mod_cluster-manager page to allow more nodes
in the page. on | off

Default: off (Full information displayed)

4.5.14. SetHandler mod_cluster-manager

SetHandler mod_cluster-manager: That is the handler to display the node mod_proxy_cluster sees
from the cluster. It displays the information about the nodes like INFO and additionally counts the
number of active sessions.

<Location /mod_cluster-manager>
 SetHandler mod_cluster-manager
 Require ip 127.0.0
</Location>

When accessing the location you define in httpd.conf you get something like:

Note that:

• Transferred: Corresponds to the POST data send to the back-end server.

• Connected: Corresponds to the number of requests been processed when the
mod_proxy_cluster status page was requested.

• sessions: Corresponds to the number of sessions mod_proxy_cluster report as active (on which
there was a request during the past 5 minutes). That field is not present when Maxsessionid is
zero.

4.5.15. mod_advertise

mod_advertise uses multicast packets to advertise the VirtualHost where it is configured that must
be the same VirtualHost where mod_manager is defined. Of course at least one mod_advertise must
be in the VirtualHost to allow mod_proxy_cluster to find the right IP and port to give to the
ClusterListener.

4.5.16. ServerAdvertise

• ServerAdvertise On – Use the advertise mechanism to tell the JBoss AS/JBossWeb/Tomcat to
whom it should send the cluster information.

• ServerAdvertise On http://hostname:port – Tell the hostname and port to use. Only needed if the
VirtualHost is not defined correctly, if the VirtualHost is a Name-based Virtual Host or when
VirtualHost is not used.

• ServerAdvertise Off – Don’t use the advertise mechanism.

Default: Off. (Any Advertise directive in a VirtualHost sets it to On in the VirtualHost)

http://hostname:port
http://httpd.apache.org/docs/2.4/vhosts/name-based.html

4.5.17. AdvertiseGroup

AdvertiseGroup IP:port: That is the multicast address to use (something like 232.0.0.2:8888 for
example). IP should correspond to AdvertiseGroupAddress and port to AdvertisePort in the JBoss
AS/JBossWeb/Tomcat configuration. Note that if JBoss AS is used and the -u startup switch is
included in the AS startup command, the default AdvertiseGroupAddress is the value passed via the
-u. If port is missing the default port will be used: 23364.

Default: 224.0.1.105:23364.

4.5.18. AdvertiseFrequency

AdvertiseFrequency seconds[.miliseconds]: Time between the multicast messages advertising the IP
and port.

Default: 10

4.5.19. AdvertiseSecurityKey

AdvertiseSecurityKey value: key string used to verify advertisements checksums. If configured on
either side the verification is required. Both sides must use the same security key.

Default: No default value.

4.5.20. AdvertiseManagerUrl

AdvertiseManagerUrl value: Not used in this version (It is sent in the X-Manager-Url: value header).
That is the URL that JBoss AS/JBossWeb/Tomcat should use to send information to mod_cluster

Default: No default value. Information not sent.

4.5.21. AdvertiseBindAddress

AdvertiseBindAddress IP:port: That is the address and port httpd is bind to send the multicast
messages. This allow to specify an address on multi IP address boxes.

Default: 0.0.0.0:23364

4.6. Minimal Example
Beware of the different names of mod_cluster_slotmem.so and mod_slotmem.so between mod_cluster
1.3.x and older versions. The 2.x version uses Apache HTTP Server’s mod_slotmem_shm.so.

4.6.1. mod_proxy_cluster 2.x with Apache HTTP Server 2.4.x

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
LoadModule slotmem_shm_module modules/mod_slotmem_shm.so

LoadModule manager_module modules/mod_manager.so
LoadModule proxy_cluster_module modules/mod_proxy_cluster.so
LoadModule advertise_module modules/mod_advertise.so
LoadModule watchdog_module modules/mod_watchdog.so

<IfModule manager_module>
 Listen 6666
 ServerName localhost
 <VirtualHost *:6666>

 # Where your worker nodes connect from
 <Location />
 Require ip 127.0.0
 </Location>

 ServerAdvertise On
 EnableMCMPReceive

 # Where administrator reads the console from
 <Location /mod_cluster-manager>
 SetHandler mod_cluster-manager
 Require ip 127.0.0
 </Location>

 </VirtualHost>
</IfModule>

For mod_proxy_cluster 1.3.x you have to change the slotmem module to:

LoadModule cluster_slotmem_module modules/mod_cluster_slotmem.so

4.7. Building httpd modules
mod_cluster 1.3.x and older, both httpd modules and Tomcat/WildFly java libraries reside in the
mod_cluster repository, see appropriate branches. New development of mod_cluster httpd modules
takes place under a new name mod_proxy_cluster in the new repository mod_proxy_cluster.

See ASCII recorded tutorial on httpd modules compilation with your own system’s httpd.

4.7.1. Build from sources on Windows

We assume you already have a functional Apache HTTP Server on Windows. This example works
with Apache Lounge HTTP Server. We also assume the system has MS Visual Studio (Community
Edition is ample) and CMake installed. The example operates in cmder shell, but it is not
mandatory. A simple Windows cmd prompt would work too.

• Download the Apache Lounge distribution. Our example uses httpd-2.4.58-win64-VS17.zip.

https://github.com/modcluster/mod_cluster
https://github.com/modcluster/mod_proxy_cluster
https://asciinema.org/a/7563u1eu6o5jlg3a0gk4wv69f?t=52
https://www.apachelounge.com/download/
https://www.apachelounge.com/download/VS17/binaries/httpd-2.4.58-win64-VS17.zip

• unzipped:

C:\Users\%username%
ls
httpd-2.4.58-win64-VS17/ httpd-2.4.58-win64-VS17.zip

• Clone mod_proxy_cluster sources git:

git clone https://github.com/modcluster/mod_proxy_cluster.git

or download zipped main branch directly.

• Proceed with env vars set and CMake build directory preparation:

C:\Users\%username%\mod_proxy_cluster\native (main)
mkdir build

C:\Users\%username%\mod_proxy_cluster\native (main)
cd build\

C:\Users\%username%\mod_proxy_cluster\native\build (main)
vcvars64.bat

Here comes the only slightly tricky part: Apache Lounge httpd ships all necessary *.lib files with
exported symbols but for mod_proxy. Since mod_proxy is our dependency, we have to generate
these exported symbols from mod_proxy dll.

dumpbin /exports C:\Users\%username%\Apache24\modules\mod_proxy.so>
C:\Users\%username%\Apache24\modules\mod_proxy.exports

echo LIBRARY mod_proxy.so> C:\Users\%username%\Apache24\modules\mod_proxy.def

echo EXPORTS>> C:\Users\%username%\Apache24\modules\mod_proxy.def

for /f "skip=19 tokens=4" %A in
(C:\Users\%username%\Apache24\modules\mod_proxy.exports) do echo %A >>
C:\Users\%username%\Apache24\modules\mod_proxy.def

lib /def:C:\Users\%username%\Apache24\modules\mod_proxy.def
/OUT:C:\Users\%username%\Apache24\modules\mod_proxy.lib /MACHINE:X64
/NAME:mod_proxy.so

Let’s run CMake:

C:\Users\%username%\mod_proxy_cluster\native\build (main)
cmake ../ -G "NMake Makefiles" -DCMAKE_BUILD_TYPE=Release

https://github.com/modcluster/mod_proxy_cluster/archive/main.zip

-DAPR_LIBRARY=C:\Users\%username%\Apache24\lib\libapr-1.lib
-DAPR_INCLUDE_DIR=C:\Users\%username%\Apache24\include\
-DAPACHE_INCLUDE_DIR=C:\Users\%username%\Apache24\include\
-DAPRUTIL_LIBRARY=C:\Users\%username%\Apache24\lib\libaprutil-1.lib
-DAPRUTIL_INCLUDE_DIR=C:\Users\%username%\Apache24\include\
-DAPACHE_LIBRARY=C:\Users\%username%\Apache24\lib\libhttpd.lib
-DPROXY_LIBRARY=C:\Users\%username%\Apache24\modules\mod_proxy.lib
-- Found APR: C:/Users/karm/Apache24/lib/libapr-1.lib
-- Found APRUTIL: C:/Users/karm/Apache24/lib/libaprutil-1.lib
-- Found APACHE: C:/Users/karm/Apache24/include
-- Build files have been written to: C:/Users/karm/mod_proxy_cluster/native/build

Compile

C:\Users\%username%\mod_proxy_cluster\native\build (main)
nmake

Directory modules now contains all necessary modules:

C:\Users\%username%\mod_proxy_cluster\native\build (main)
copy modules*.so C:\Users\%username%\Apache24\modules\
'modules/mod_advertise.so' -> 'C:/Users/karm/Apache24/modules/mod_advertise.so'
'modules/mod_manager.so' -> 'C:/Users/karm/Apache24/modules/mod_manager.so'
'modules/mod_proxy_cluster.so' ->
'C:/Users/karm/Apache24/modules/mod_proxy_cluster.so'

Done.

4.7.2. Build from sources on Linux/Unix

As for Windows, you can download the httpd bundle as well from here. Alternatively, you can use
your distribution’s repositories (on Fedora, you can install httpd simply by executing dnf install
httpd), or you can build httpd from sources.

To build httpd-2.4.x from its sources see ASF httpd 2.4 doc.

Download the sources and configure httpd with following:

./configure --prefix=apache_installation_directory \
 --with-included-apr \
 --enable-proxy-ajp \
 --enable-so \
 --enable-proxy \
 --enable-proxy-http \
 --enable-proxy-hcheck \
 --with-port=8000 \
 --with-libxml2

https://dlcdn.apache.org/httpd/
http://httpd.apache.org/docs/2.4/install.html


Please bear in mind that the exact arguments/flags might differ based on your
library choosing. Always consult the documentation.


In case you want to use httpd for development purposes, you might find useful
adding --enable-maintainer-mode flag.

Build (make) and install (make install) httpd as configured.

4.7.3. Build the modules of mod_proxy_cluster

You need an httpd installation with mod_proxy (--enable-proxy) and ajp protocol (--enable-proxy
-ajp) enabled and with dso enabled (--enable-so).

Download the mod_proxy_cluster sources:

git clone git://github.com/modcluster/mod_proxy_cluster.git

or download zipped main branch directly.

Build the mod_proxy_cluster’s modules components, for each subdirectory advertise,
mod_manager and mod_proxy_cluster do following:

sh buildconf
./configure --with-apxs=apxs_file_location
make clean
make
cp *.so $APACHE_DIR/modules

or alternatively using CMake:

create a new subdirectory within native/ directory
mkdir build
cd build
cmake ..
make
cp modules/*so $APACHE_DIR/modules

Where $APACHE_DIR is the location of the installed httpd.

The apxs file can be found in your $APACHE_DIR/bin directory.


You can ignore the libtool message on most platforms (libtool: install: warning:
remember to run `libtool --finish $APACHE_DIR/modules').


For mod_proxy_cluster 1.3.x you have to build mod_cluster_slotmem with the rest

https://github.com/modcluster/mod_proxy_cluster/archive/main.zip
https://httpd.apache.org/docs/trunk/programs/apxs.html

of modules.

Once that is done use Apache httpd configuration to configure mod_proxy_cluster.

4.7.4. Configuration

A minimal configuration for mod_proxy_cluster to work is needed in httpd. A listener must be
added in JWS/Tomcat’s conf/server.xml.

The httpd.conf is located in httpd/conf/ directory. To quickly test that everything is in place, add the
configuration from the minimal example.

To start httpd do the following:

httpd/sbin/apachectl start

 Make sure to use SSL before going in production.

#mod_proxy_cluster-2-x-with-apache-http-server-2-4-x

Chapter 5. Security configuration

 Improve this page – edit on GitHub.

5.1. Using SSL in mod_cluster
Forwarding SSL browser information when using http/https between httpd and JBossWEB:

There are 2 connections between the cluster and the front-end. Both could be encrypted. That
chapter describes how to encrypt both connections.

5.1.1. Using SSL between JBossWEB and httpd

As the ClusterListener allows to configure httpd it is advised to use SSL for that connection. The
most easy is to use a virtual host that will only be used to receive information from JBossWEB. Both
side need configuration.

Apache httpd configuration part

mod_ssl of httpd is using to do that. See in one example how easy the configuration is:

Listen 6666

<VirtualHost 10.33.144.3:6666>
 SSLEngine on
 SSLCipherSuite AES128-SHA:ALL:!ADH:!LOW:!MD5:!SSLV2:!NULL
 SSLCertificateFile conf/server.crt
 SSLCertificateKeyFile conf/server.key
 SSLCACertificateFile conf/server-ca.crt
 SSLVerifyClient require
 SSLVerifyDepth 10
</VirtualHost>

The conf/server.crt file is the PEM-encoded Certificate file for the VirtualHost it must be signed by a
Certificate Authority (CA) whose certificate is stored in the sslTrustStore of the ClusterListener
parameter.

The conf/server.key file is the file containing the private key.

The conf/server-ca.crt file is the file containing the certificate of the CA that have signed the client
certificate JBossWEB is using. That is the CA that have signed the certificate corresponding to the
sslKeyAlias stored in the sslKeyStore of the ClusterListener parameters.

ClusterListener configuration part

There is a ModCluster Listener article describing the SSL parameters of the ClusterListener. See in
one example how easy the configuration is:

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/security.adoc
http://httpd.apache.org/docs/2.4/mod/mod_ssl.html
developer/index.pdf#ClusterListener

<Listener className="org.jboss.web.cluster.ClusterListener"
 ssl="true"
 sslKeyStorePass="changeit"
 sslKeyStore="/home/jfclere/CERTS/CA/test.p12"
 sslKeyStoreType="PKCS12"
 sslTrustStore="/home/jfclere/CERTS/CA/ca.p12"
 sslTrustStoreType="PKCS12"
 sslTrustStorePassword="changeit"
 />

The sslKeyStore file contains the private key and the signed certificate of the client certificate
JBossWEB uses to connect to httpd. The certificate must be signed by a Certificate Authority (CA)
who certificate is in the conf/server-ca.crt file of the httpd

The sslTrustStore file contains the CA certificate of the CA that signed the certificate contained in
conf/server.crt file.

mod-cluster-jboss-beans configuration part

The mod-cluster-jboss-beans.xml in $JBOSS_HOME/server/profile/deploy/mod-cluster.sar/META-INF in
the ClusterConfig you are using you should have something like:

<property name="ssl">true</property>
<property name="sslKeyStorePass">changeit</property>
<property name="sslKeyStore">/home/jfclere/CERTS/test.p12</property>
<property name="sslKeyStoreType">pkcs12</property>
<property name="sslTrustStore">/home/jfclere/CERTS/ca.p12</property>
<property name="sslTrustStoreType">pkcs12</property>
<property name="sslTrustStorePassword">changeit</property>

How the different files were created

The files were created using OpenSSL utilities see OpenSSL CA.pl (/etc/pki/tls/misc/CA for example)
has been used to create the test Certificate authority, the certificate requests and private keys as
well as signing the certificate requests.

Create the CA

Create a work directory and work for there:

mkdir -p CERTS/Server
cd CERTS/Server

Create a new CA:

/etc/pki/tls/misc/CA -newca

http://www.openssl.org/

That creates a directory for example ../../CA that contains a cacert.pem file which content have to be
added to the conf/server-ca.crt described above.

Export the CA certificate to a .p12 file:

openssl pkcs12 -export -nokeys -in ../../CA/cacert.pem -out ca.p12

That reads the file cacert.pem that was created in the previous step and convert it into a pkcs12 file
the JVM is able to read.

That is the ca.p12 file used in the sslTrustStore parameter above.

Create the server certificate

Create a new request:

/etc/pki/tls/misc/CA -newreq

That creates 2 files named newreq.pem and newkey.pem. newkey.pem is the file conf/server.key
described above.

Sign the request:

/etc/pki/tls/misc/CA -signreq

That creates a file named newcert.pem. newcert.pem is the file conf/server.crt described above. At
that point you have created the SSL stuff needed for the VirtualHost in httpd. You should use a
browser to test it after importing in the browser the content of the cacert.pem file.

Create the client certificate

Create a work directory and work for there:

mkdir -p CERTS/Client
cd CERTS/Client

Create request and key for the JBossWEB part.

/etc/pki/tls/misc/CA -newreq

That creates 2 files: Request is in newreq.pem, private key is in newkey.pem

Sign the request.

/etc/pki/tls/misc/CA -signreq

That creates a file: newcert.pem

Don’t use a passphrase when creating the client certificate or remove it before exporting:

openssl rsa -in newkey.pem -out key.txt.pem
mv key.txt.pem newkey.pem

Export the client certificate and key into a p12 file.

openssl pkcs12 -export -inkey newkey.pem -in newcert.pem -out test.p12

That is the sslKeyStore file described above (/home/jfclere/CERTS/CA/test.p12)

Using SSL between httpd and JBossWEB

Using https allows to encrypt communications between httpd and JBossWEB. But due to the
resources it needs that no advised to use it in high load configuration.

See Encrypting connection between httpd and TC for detailed instructions.

httpd is configured to be a client for AS/TC, so it should provide a certificate AS/TC will accept and
have a private key to encrypt the data, it also needs a CA certificate to valid the certificate AS/TC
will use for the connection.

SSLProxyEngine On
SSLProxyVerify require
SSLProxyCACertificateFile conf/cacert.pem
SSLProxyMachineCertificateFile conf/proxy.pem

conf/proxy.pem should contain both key and certificate. The certificate must be trusted by Tomcat
via the CA in truststoreFile of <connector/>.

conf/cacert.pem must contain the certificate of the CA that signed the AS/TC certificate. The
correspond key and certificate are the pair specified by keyAlias and truststoreFile of the
<connector/>. Of course the <connector/> must be the https one (normally on port 8443).

How the different files were created

The files were created using OpenSSL utilities see OpenSSL CA.pl (/etc/pki/tls/misc/CA for example)
has been used to create the test Certificate authority, the certificate requests and private keys as
well as signing the certificate requests.

developer/index.pdf#encrypting-connection-tomcat
http://www.openssl.org/

Create the CA

(See above)

Create the server certificate

(See above)

The certificate and key need to be imported into the java keystore using keytool

make sure you don’t use a passphrase for the key (don’t forget to clean the file when done)

Convert the key and certificate to p12 file:

openssl pkcs12 -export -inkey key.pem -in newcert.pem -out test.p12

make sure you use the keystore password as Export passphrase.

Import the contents of the p12 file in the keystore:

keytool -importkeystore -srckeystore test.p12 -srcstoretype PKCS12

Import the CA certificate in the java trust store: (Fedora 13 example).

keytool -import -trustcacerts -alias "caname" -file ../../CA/cacert.pem -keystore
/etc/pki/java/cacerts

Edit server.xml to have a <connector/> similar to:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 keyAlias="1"
 truststoreFile="/etc/pki/java/cacerts"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="true" sslProtocol="TLS" />

Start TC/AS and use openssl s_client to test the connection:

openssl s_client -CAfile /home/jfclere/CA/cacert.pem -cert newcert.pem -key newkey.pem
-host localhost -port 8443

There shouldn’t be any error, and you should be able to see your CA in the "Acceptable client
certificate CA names".

Forwarding SSL browser information when using http/https between httpd and JBossWEB

When using http or https between httpd and JBossWEB you need to use the SSLValve and export the

#createca
#createsc

SSL variable as header in the request in httpd. If you are using AJP, mod_proxy_ajp will read the
SSL variables and forward them to JBossWEB automatically.

See Forwarding SSL environment when using http/https proxy for detailed instructions.

The SSL variable used by mod_proxy_ajp are the following:

1. "HTTPS" SSL indicator.

2. "SSL_CLIENT_CERT" Chain of client certificates.

3. "SSL_CIPHER" The cipher used.

4. "SSL_SESSION_ID" The ID of the session.

5. "SSL_CIPHER_USEKEYSIZE" Size of the key used.

developer/index.pdf#modproxy-forwarding

Chapter 6. Load Balancing Demo Application

 Improve this page – edit on GitHub.


The demo application has not been recently updated and might not work with
newer software versions as described below!

6.1. Overview
The mod_cluster distribution includes a demo application that helps demonstrate how different
server-side scenarios affect the routing of client requests by the load balancer. The demo
application is located in the mod_cluster distribution’s demo directory.

The demo application consists of two components:

1. The first component is a war file that needs to be deployed in JBossWeb/Tomcat/JBoss AS. The
war includes a number of servlets.

2. The second component is a GUI application that allows a user to launch a pool of threads that
repeatedly make requests to the load balancer. The requests are ultimately routed to the demo
war’s primary servlet. The application tracks which servers are handling the requests and
displays this information in a chart.

The application can also send separate requests to the demo war’s load generation servlets,
allowing the user to see how different load conditions affect the balancing of requests.

Note that the demo application does not actually depend on mod_cluster in any way. Its only
dependency is on JBossWeb/Tomcat. [1]Consequently, the demo can be used to demonstrate the
effect of different server-side scenarios on the routing decisions made by any load balancer,
including mod_jk, mod_proxy or the various hardware load balancers.

Note also that this demo application is not intended to be used as a load testing tool; i.e. something
that can demonstrate the maximum load a cluster configuration can handle. Using it as such has a
good chance of showing you the maximum load the client can generate rather than the maximum
load your cluster can handle.

6.2. Basic Usage
To run the demo application:

1. Unpack the mod_cluster distribution on your filesystem. Here we assume it has been unzipped
to ~/mod_cluster or C:\mod_cluster.

2. Install mod_cluster into your httpd server as described at Installation of the httpd part

3. Install mod_cluster into your JBossAS/JBossWeb/Tomcat servers as described at Installation on
the Java side

4. In AS7 you have to set org.apache.tomcat.util.ENABLE_MODELER to true, Something like:

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/demo.adoc
#install-the-worker-side-binaries
#install-the-worker-side-binaries

<system-properties>
 <property name="org.apache.tomcat.util.ENABLE_MODELER" value="true"/>
</system-properties>

1. Start httpd and your JBossAS/JBossWeb/Tomcat servers

2. Deploy the application war file that you can find in demo/server/target/ and the name will be
mod_cluster-demo-server-<mod_cluster-version>-SNAPSHOT.war where you substitute the
mod_cluster’s version according to your distribution.

3. Start the demo application:

a. On *nix:

cd ~/mod_cluster/demo/client/target/classes
./run-demo.sh

a. On Windows

C:\> cd mod_cluster\demo\client\target\classes
C:\mod_cluster\demo\client> run-demo

1. Configure the hostname and address of the httpd server, the number of client threads, etc and
click the "Start" button. See Client Driver Configuration Options for details on the configuration
options.

2. Switch to the "Request Balancing" tab to see how many requests are going to each of your

#client-driver-configuration-options

JBossAS/JBossWeb/Tomcat servers.

1. Switch to the "Session Balancing" tab to see how many active sessions[2] are being hosted by
each of your JBossAS/JBossWeb/Tomcat servers.

2. Stop some of your JBossAS/JBossWeb/Tomcat servers and/or undeploy the load-demo.war from
some of the servers and see the effect this has on load balancing.

3. Restart some of your JBossAS/JBossWeb/Tomcat servers and/or re-deploy the demo application
to some of the servers and see the effect this has on load balancing.

4. Experiment with adding artificial load to one or more servers to see what effect that has on load
balancing. See Load Generation Scenarios for details.

Most of the various panels in application interface also present information on the current status
on any client threads. "Total Clients" is the number of client threads created since the last time the
"Start" button was pushed. "Live Clients" is the number of threads currently running. "Failed
Clients" is the number of clients that terminated abnormally; i.e. made a request that resulted in
something other than an HTTP 200 response.

6.3. Client Driver Configuration Options
The configuration of the client is driver is done via the application’s "Clent Control" tab.

The panel includes the following options:

• Proxy Hostname: Hostname of the load balancer or the IP address on which it is listening for
requests[3]

• Proxy Port: Port on which the load balancer is listening for requests[4]

#load-generation-scenarios

• Context Path: Portion of the request URL that specifies the request is for the load-demo.war

• Session Life: Number of seconds a client thread should use a session before invalidating or
abandoning it. Generally it is good to keep this to a small value; otherwise the use of session
stickiness will prevent changes in server load from affecting the load balancer’s routing
decisions. With sticky sessions enabled (strongly recommended), it is the creation of a new
session that allows the load balancer to try to balance load.

• Invalidate: Controls what the client thread should do when it stops using a session because
Session Life has passed. If checked, the driver will send a request that results in the session
being invalidated. If unchecked, the session will just be abandoned, and will continue to exist on
the server until Session Timeout seconds have passed. In the future this will likely be changed
to a percentage input, so X% can be invalidated, the rest abandoned.

• Session Timeout: Number of seconds a session can remain unused before the server is free to
expire it. Unchecking Invalidate and setting a high value relative to Session Life allows a
significant number of unused sessions to accumulate on the server.

• Num Threads: Number of client threads to launch. Each thread repeatedly makes requests until
the "Stop" button is pushed or a request receives a response other than HTTP 200.

• Sleep Time: Number of ms the client threads should sleep between requests.

• Startup Time: Number of seconds over which the application should stagger the start of the
client threads. Staggering the start advised as it avoids the unnatural situation where for the life
of the demonstation all sessions start at about the same time and then are invalidated or
abandoned at the same time. Staggering the start allows the load balancer to continually see
new sessions and decide how to route them.

6.4. Load Generation Scenarios
You can use the application’s GUI to instruct individual servers to artificially generate various types
of load, and then track how that load affects request and session balancing. Load generation is
controlled via the application’s "Server Load Control" tab.

The panel includes the following options:

• Target Hostname and Target Port: The hostname or IP address of the server on which you want
load generated. There are two strategies for setting these:

• You can use the hostname and port of the load balancer, in which case the load balancer will
pick a backend server and route the request to it. Note the client application does not maintain
a session cookie for these requests, so if you invoke another server load generation request, you
shouldn’t expect the same server to handle it.

• If the JBoss AS/JBossWeb/Tomcat servers are running the HttpConnector as well as the AJP
connector, you can specify the address and port on which a particular server’s HttpConnector is
listening. The standard port is 8080.

• Load Creation Action: Specifies the type of load the target server should generate. See below for
details on the available load types.

• Params: Zero or more parameters to pass to the specified load creation servlet. For example, in
the screenshot above, Number of Connections and Duration. How many parameters are

displayed, their name and their meaning depend on the selected Load Creation Action. The label
for each parameter includes a tooltip that explains its use.

The available Load Creation Actions are as follows:

Active Sessions

Generates server load by causing session creation on the target server.

Datasource Use

Generates server load by taking connections from the java:DefaultDS datasource for a period

Connection Pool Use

Generates server load by tieing up threads in the webserver connections pool for a period

Heap Memory Pool Use

Generates server load by filling 50% of free heap memory for a period

CPU Use

Generates server CPU load by initiating a tight loop in a thread

Server Receive Traffic

Generates server traffic receipt load by POSTing a large byte array to the server once per second
for a period

Server Send Traffic

Generates server traffic send load by making a request once per second to which the server
responds with a large byte array

Request Count

Generates server load by making numerous requests, increasing the request count on the target

server

[1]

The demo’s "Datasource Use" load generation scenario requires the use of JBoss Application
Server.

[2]

For purposes of this chart, a session is considered "active" if a client thread will ever again send
a request associated with the session. When client threads stop using a session, they can either
send a request to invalidate it or just abandon it by no longer including its session cookie in
requests. After a session is abandoned, it will not be reflected in the "Session Balancing" chart,
but it will continue to exist on the JBossWeb/Tomcat/JBoss AS server until it is removed due to
timeout.

[3]

The default value for this field is controlled by the mod_cluster.proxy.host system property, or
localhost if not set. Editing the run-demo.sh or run-demo.bat file to change the
-Dmod_cluster.proxy.host=localhost passed to java will allow you to avoid re-typing this value
every time you launch the demo application.

[4]

The default value for this field is controlled by the mod_cluster.proxy.port system property, or
8000 if not set. Editing the run-demo.sh or run-demo.bat file to change the
-Dmod_cluster.proxy.port=8000 passed to java will allow you to avoid re-typing this value every
time you launch the demo application.

#fn1link
#fn2link
#fn3link
#fn4link

Chapter 7. FAQ

 Improve this page – edit on GitHub.

7.1. What is Advertise?
Advertise allows autodiscovery of httpd proxies by the cluster nodes. It is done by sending multicast
messages from httpd to the cluster. The httpd specialized module: mod_advertise sends UDP
message on a multicast group, both mod_advertise and the cluster listener joined the multicast
group and the cluster receives the messages.

Example of a mod_advertise message:

HTTP/1.0 200 OK
Date: Wed, 08 Apr 2009 12:26:32 GMT
Sequence: 16
Digest: f2d5f806a53effa6c67973d2ddcdd233
Server: 1b60092e-76f3-49fd-9f99-a51c69c89e2d
X-Manager-Address: 127.0.0.1:6666
X-Manager-Url: /bla
X-Manager-Protocol: http
X-Manager-Host: 10.33.144.3

The X-Manager-Address header value is used by the cluster logic to send information about the
cluster to the proxy. It is the IP and port of the VirtualHost where mod_advertise is configured or
URL parameter of the ServerAdvertise directive.

See mod_advertise configuration.

7.2. What to do if I don’t want to use Advertise (UDP
multicast)
In the VirtualHost receiving the MCMP of httpd.conf don’t use any Advertise directive or set
explicitly:

ServerAdvertise Off

On the worker side, add the addresses and ports of the VirtualHost receiving MCMP (having
EnableMCMPReceive) to the proxyList property and set advertise to false, for example:

7.2.1. JBoss AS 5

<property name="proxyList">10.33.144.3:6666,10.33.144.1:6666</property>
<property name="advertise">false</property>

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/faq.adoc

in jboss-as/server/production/deploy/mod-cluster.sar/META-INF/mod-cluster-jboss-beans.xml.

7.2.2. Tomcat 6/7/8 and JBossWeb

In server.xml, change

<Listener className=
"org.jboss.modcluster.container.catalina.standalone.ModClusterListener" />

to

<Listener className=
"org.jboss.modcluster.container.catalina.standalone.ModClusterListener"
 advertise="false"
 proxyList="10.33.144.3:6666,10.33.144.1:6666"
/>

7.3. It is not working, what should I do?
Please, at first, go through the following check-list. Set Apache HTTP Server’s LogLevel debug in
httpd.conf and read the error_log. If you get stuck, you are welcome to

• post on JBoss user forums

• join JBoss mailing list and and drop us a line

7.3.1. There is no error in the error_log

That happens when Advertise is not working and no Proxy List is configured: The worker nodes do
not get the from Apache HTTP Server.

1. Check that the modules are loaded and Advertise is started. In httpd.conf activate extended
information display, add:

AllowDisplay On

When accessing the mod_cluster-manager console you should get something like: TODO: Image. If
not, go to the Minimal Example and add the missing directive(s).

1. Check that Advertise message are received on the cluster node. A Java utility could be used to
check Advertise. It is in the mod_proxy_cluster repository and can be compiled using javac. The
output should be something like:

[jfclere@jfcpc java]$ java Advertize 224.0.1.105 23364
ready waiting…
received: HTTP/1.0 200 OK

https://github.com/modcluster/mod_proxy_cluster/blob/main/test/java/Advertize.java
https://github.com/modcluster/mod_proxy_cluster

Date: Mon, 28 Jun 2010 07:30:31 GMT
Sequence: 1
Digest: df8a4321fa99e5098174634f2fe2f87c
Server: 1403c3be-837a-4e76-85b1-9dfe5ddb4378
X-Manager-Address: test.example.com:6666
X-Manager-Url: /1403c3be-837a-4e76-85b1-9dfe5ddb4378
X-Manager-Protocol: http
X-Manager-Host: test.example.com

• If there are no Advertise messages, check the firewall. Advertise uses UDP port 23364 and
multicast address 224.0.1.105 by default. Furthermore, do not bind to localhost/127.0.0.1, use a
non-localhost IP address for your balancer – workers UDP advertisement test.

• If you are unable to get the Advertisement to work, try it first without it, with a static
configuration without UDP multicast).

7.3.2. Error in server.log or catalina.out

• IO error sending command: Check the firewall and error_log, if there is nothing in the error_log
then it is a firewall problem. If you have something like:

INFO [DefaultMCMPHandler] IO error sending command INFO to proxy
jfcpc/10.33.144.3:8888

it means that the worker was unable to contact the balancer. Keep in mind that the
communication is bidirectional.

You can use telnet hostname/address port to check that it is OK, e.g.:

[jfclere@jfcpc docs]$ telnet 10.33.144.3 8888
Trying 10.33.144.3…
Connected to jfcpc.
Escape character is '^]'.
GET /
<html><body><h1>It works!</h1></body></html>Connection closed by foreign host.

Check that the address and port are the expected ones you may use ServerAdvertise directive in
you mod_cluster httpd configuration:

ServerAdvertise On http://localhost:6666

7.3.3. Error in error_log

• client denied by server configuration: The directory in the VirtualHost is not allowed for the
client. If you have something like:

[error] [client 10.33.144.3] client denied by server configuration: /

You need to have something like the undermentioned authentication configured in the
EnableMCMPReceive marked VirtualHost:

<Location />
 Require ip 10.33.144.3
</Location>

7.4. I started mod_cluster and it looks like it’s using
only one of the workers?
One must give the system some time, in matter of the amount of new sessions created, to settle and
pick other nodes. An example from an actual environment: You have 3 nodes with the following
Load values:

Node jboss-6, Load: 20
Node jboss-6-2, Load: 90
Node jboss-6-3, Load: 1

Yes, this means that jboss-6-2 is almost not loaded at all whereas jboss-6-3 is desperately
overloaded. Now, I send 1001 requests, each representing a new session (the client is forgetting
cookies). The distribution of the requests will be as follows:

Node jboss-6 served 181 requests
Node jboss-6-2 served 811 requests
Node jboss-6-3 served 9 requests

So, generally, yes, the least loaded box received by far the greatest amount of requests, but it did not
receive them all. Furthermore, and this concerns your case, for some time from the start, it was
jboss-6 who was getting requests.

This whole magic is in place in order to prevent congestion.

7.5. Keep seeing "HTTP/1.1 501 Method Not
Implemented"
The EnableMCMPReceive must be configured in the VirtualHost where the MCMP elements are
configured in the Apache httpd configuration. See minimal example above.

7.6. Redirect is not working (Tomcat, JBossWeb):
When using http/https instead of AJP, proxyname, proxyhost and redirect must be configured in the
Tomcat Connector. Something like:

<Connector port="8080"
 protocol="HTTP/1.1"
 connectionTimeout="20000"
 proxyName="httpd_host_name"
 proxyPort="8000"
 redirectPort="443"
/>

7.7. I have more than one Tomcat/JBossWeb Connector
mod_cluster tries to use the first AJP connector configured. If there is not any AJP connector, it uses
the http or https that has the biggest maxthreads value. That is maxThreads in Tomcat 6/7/8 and JBoss
AS 5/6:

<Connector port="8080" protocol="HTTP/1.1" maxThreads="201"/>

Or max-connections in JBoss AS 7: (32 * processor + 1 for native and 512 * processor + 1 for JIO).

In Web subsystem:

<connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http" max-
connections="513"/>

7.8. Chrome does not display /mod_cluster-manager
page
When using Chrome with mod_cluster-manager, the page is not displayed and the following error is
displayed instead:

Error 312 (net::ERR_UNSAFE_PORT): Unknown error.

you can change the port of the VirtualHost to 7777 or any value chrome accepts or add:

 –explicitly-allowed-ports=6666

to the start parameters of Chrome.

7.9. How do I use mod_cluster with SELinux?
mod_cluster needs to open port and create shared memory and files, therefore some permissions
have to be added, you need to configure something like:

policy_module(mod_cluster, 1.0)

require {
 type unconfined_java_t;
 type httpd_log_t;
 type httpd_t;
 type http_port_t;
 class udp_socket node_bind;
 class file write;
}

============= httpd_t ==============

allow httpd_t httpd_log_t:file write;
corenet_tcp_bind_generic_port(httpd_t)
corenet_tcp_bind_soundd_port(httpd_t)
corenet_udp_bind_generic_port(httpd_t)
corenet_udp_bind_http_port(httpd_t)

============= unconfined_java_t ==============

allow unconfined_java_t http_port_t:udp_socket node_bind;

Put the above in a file for example mod_cluster.te and generate the mod_cluster.pp file (for example
in Fedora 16):

[jfclere@jfcpc docs]$ make -f /usr/share/selinux/devel/Makefile
Compiling targeted mod_cluster module
/usr/bin/checkmodule: loading policy configuration from tmp/mod_cluster.tmp
/usr/bin/checkmodule: policy configuration loaded
/usr/bin/checkmodule: writing binary representation (version 14) to
tmp/mod_cluster.mod
Creating targeted mod_cluster.pp policy package
rm tmp/mod_cluster.mod.fc tmp/mod_cluster.mod

The mod_cluster.pp file should be proceeded by semodule as root:

[root@jfcpc docs]# semodule -i mod_cluster.pp
[root@jfcpc docs]#

Alternatively, one may use semanage and add ports and paths labels manually.

7.10. How do I change STATUS message frequency?
In WildFly, this behavior is configurable in the mod_cluster subsystem. Run the following CLI
command to adjust to 20 seconds in this example:

/subsystem=modcluster/proxy=default:write-attribute(name=status-interval, value=20)

In Tomcat, you need to use system property to modify this behavior. Setting
org.jboss.modcluster.container.catalina.status-frequency (default: 1) makes worker to send
STATUS MCMP messages only 1/n periodic event. The events occur every backgroundProcessorDelay
(default 10 seconds).

7.11. How can I debug requests in Undertow?
Undertow by default provides a RequestDumpingHandler from the main io.undertow.core module. Use
the following CLI script to configure Undertow to log the request to the log:

batch
/subsystem=undertow/configuration=filter/custom-filter=request-dumping-
filter:add(class-name=io.undertow.server.handlers.RequestDumpingHandler,
module=io.undertow.core)
/subsystem=undertow/server=default-server/host=default-host/filter-ref=request-
dumping-filter:add
run-batch
reload

Chapter 8. Migration

 Improve this page – edit on GitHub.

8.1. Migration from mod_jk
The mod_cluster only support Apache httpd, there are no plans to support IIS nor IPlanet.

The migration from mod_jk to mod_cluster is not very complex. Only very few worker properties
can’t be mapped to mod_cluster parameters.

Here is the table of worker properties and how to transfer them in the ClusterListener parameters.

mod_jk worker property ClusterListener parameter Remarks

host - It is read from the <Connector/>
Address information

port - It is read from the <Connector/>
Port information

type - It is read from the <Connector/>
Protocol information

route - It is read from the <Engine/>
JVMRoute information

domain domain That is not supported in this
version

redirect - The nodes with loadfactor = 0
are standby nodes they will be
used no other nodes are
available

socket_timeout nodeTimeout Default 10 seconds

socket_keepalive - KEEP_ALIVE os is always on in
mod_cluster

connection_pool_size - The max size is calculated to be
AP_MPMQ_MAX_THREADS+1
(max)

connection_pool_minsize smax The default is max

connection_pool_timeout ttl Time to live when over smax
connections. The default is 60
seconds

- workerTimeout Max time to wait for a free
worker default 1 second

retries maxAttempts Max retries before returning an
error Default: 3

https://github.com/modcluster/docs.modcluster.io/edit/main/docs/src/main/asciidoc/migration.adoc

mod_jk worker property ClusterListener parameter Remarks

recovery_options - mod_cluster behave like mod_jk
with value 7

fail_on_status - Not supported

max_packet_size iobuffersize/receivebuffersize Not supported in this version.
Use ProxyIOBufferSize

max_reply_timeouts - Not supported

recovery_time - The ClusterListener will tell (via
a STATUS message) mod_cluster
that the node is up again

activation - mod_cluster receives this
information via
ENABLE/DISABLE/STOP
messages

distance - mod_cluster handles this via
the loadfactor logic

mount - The context "mounted"
automatically via the ENABLE-
APP messages. ProxyPass could
be used too

secret - Not supported

connect_timeout - Not supported. Use
ProxyTimeout or server
TimeOut (Default 300 seconds)

prepost_timeout ping Default 10 seconds

reply_timeout - Not supported. Use
ProxyTimeout or server
TimeOut? directive (Default 300
seconds)

8.2. Migration from mod_proxy
As mod_cluster is a sophisticated balancer, migration from mod_proxy to mod_cluster is
straightforward. The mod_cluster replaces a reverse proxy with load-balancing. A reverse proxy is
configured such as:

ProxyRequests Off

<Proxy *>
 Order deny,allow
 Allow from all
</Proxy>

ProxyPass /foo http://foo.example.com/bar
ProxyPassReverse /foo http://foo.example.com/bar

All the general proxy parameters could be used in mod_cluster they work like in mod_proxy, only the
balancers and the workers definitions are slightly different.

8.2.1. Workers

mod_proxy Parameter ClusterListener parameter Note

min - Not supported in this version

max - mod_cluster uses mod_proxy
default value

smax smax Same as mod_proxy

ttl ttl Same as mod_proxy

acquire workerTimeout Same as mod_proxy acquire but
in seconds

disablereuse - mod_cluster will disable the
node in case of error and the
ClusterListener will for the
reuse via the STATUS message

flushPackets flushPackets Same as mod_proxy

flushwait flushwait Same as mod_proxy

keepalive - Always on: OS KEEP_ALIVE is
always used. Use
connectionTimeout in the
<Connector> if needed

lbset - Not supported

ping ping Same as mod_proxy Default
value 10 seconds

lbfactor - The load factor is received by
mod_cluster from a calculated
value in the ClusterListener

redirect - Not supported lbfactor sent to 0
makes a standby node

retry - ClusterListener will test when
the node is back online

route JVMRoute In fact JBossWEB via the
JVMRoute in the Engine will
add it

mod_proxy Parameter ClusterListener parameter Note

status - mod_cluster has a finer status
handling: by context via the
ENABLE/STOP/DISABLE/REMOV
E application messages. hot-
standby is done by lbfactor = 0
and Error by lbfactor = 1 both
values are sent in STATUS
message by the ClusterListener

timeout nodeTimeout Default wait forever
(http://httpd.apache.org/docs/2.4
/mod/mod_proxy.html is wrong
there)

ttl ttl Default 60 seconds

8.2.2. Balancers

mod_proxy Parameter ClusterListener parameter Note

lbmethod - There is only one load
balancing method in
mod_cluster
"cluster_byrequests"

maxattempts maxAttempts Default 1

nofailover stickySessionForce Same as in mod_proxy

stickysession StickySessionCookie/StickySessi
onPath

The 2 parameters in the
ClusterListener are combined in
one that behaves like in
mod_proxy

timeout workerTimeout Default 1 seconds

http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy.html

Chapter 9. Developer Resources
For more technical and detailed information, such as the ModCluster Management Protocol (MCMP)
definition, visit Developer Resources page.

https://docs.modcluster.io/developer/

	mod_cluster Documentation
	mod_cluster
	Chapter 1. Overview
	1.1. Support Matrix
	1.2. Platforms
	1.3. Advantages
	1.4. Requirements
	1.5. Limitations
	1.6. Downloads
	1.7. Configuration
	1.8. Migration from mod_jk or mod_proxy
	1.9. SSL support

	Chapter 2. Quick Start Guide
	2.1. Download mod_cluster components
	2.2. Install the httpd binary
	2.3. Configure httpd
	2.4. Install the worker-side binaries
	2.5. Configuring the server-side
	2.6. Experiment with the Load Balancing Demo Application

	Chapter 3. Container Integration Configuration
	3.1. JBoss AS
	3.2. JBoss Web & Tomcat
	3.3. AS7 modcluster subsystem Configuration
	3.4. ModCluster Subsystem configuration
	3.5. Building worker-side Components
	3.6. Worker-side Load Metrics
	3.7. Installing Worker-side Components

	Chapter 4. httpd configuration
	4.1. Apache httpd configuration
	4.2. mod_proxy configuration
	4.3. mod_slotmem/mod_cluster_slotmem configuration
	4.4. mod_proxy_cluster
	4.5. mod_manager
	4.6. Minimal Example
	4.7. Building httpd modules

	Chapter 5. Security configuration
	5.1. Using SSL in mod_cluster

	Chapter 6. Load Balancing Demo Application
	6.1. Overview
	6.2. Basic Usage
	6.3. Client Driver Configuration Options
	6.4. Load Generation Scenarios

	Chapter 7. FAQ
	7.1. What is Advertise?
	7.2. What to do if I don’t want to use Advertise (UDP multicast)
	7.3. It is not working, what should I do?
	7.4. I started mod_cluster and it looks like it’s using only one of the workers?
	7.5. Keep seeing "HTTP/1.1 501 Method Not Implemented"
	7.6. Redirect is not working (Tomcat, JBossWeb):
	7.7. I have more than one Tomcat/JBossWeb Connector
	7.8. Chrome does not display /mod_cluster-manager page
	7.9. How do I use mod_cluster with SELinux?
	7.10. How do I change STATUS message frequency?
	7.11. How can I debug requests in Undertow?

	Chapter 8. Migration
	8.1. Migration from mod_jk
	8.2. Migration from mod_proxy

	Chapter 9. Developer Resources

